Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Dynamic Mode Decomposition Based Reduced-Order Model For Parameterized Time-Dependent Partial Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a reduced-order model (ROM) based on dynamic mode decomposition (DMD) for efficient reduced-order modeling of parameterized time-dependent partial differential equations. Given high-fidelity solutions for training time and parameter sets, a proper orthogonal decomposition (POD) is first used to extract the POD modes and the projection coefficients onto the modes. After that, a DMD model is built for each parameter value based on the corresponding projection coefficients. These DMD models are used to predict the projection coefficients over a larger time region than the training time region. We rearrange these predicted coefficients as a new matrix and perform POD again to decompose the matrix into time-dependent and parameter-dependent parts, which are approximated using cubic spline interpolation (CSI) and Gaussian process regression (GPR), respectively. Finally, the ROM solutions at any given time or parameter value are estimated by a simple multiplication of the POD modes and the approximated projection coefficients. The proposed method is tested through several benchmark problems, and the impact of using CSI and GPR to model the time-dependent part on the model accuracy is analyzed. In addition, numerical results for a PDE with 19 parameters demonstrate the great potential of the proposed method in the construction of a ROM for problems with high dimensional parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Martin, S., Wälchli, D., Arampatzis, G., Economides, A., Karnakov, P., Koumoutsakos, P.: Korali: efficient and scalable software framework for Bayesian uncertainty quantification and stochastic optimization. Comput. Methods Appl. Mech. Eng. 389, 114264 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Thapa, M., Missoum, S., Thapa, M., Missoum, S.: Uncertainty quantification and global sensitivity analysis of composite wind turbine blades. Reliab. Eng. Syst. Saf. 222, 108354 (2022)

    Google Scholar 

  3. White, D.A., Choi, Y., Kudo, J.: A dual mesh method with adaptivity for stress-constrained topology optimization. Struct. Multidiscip. Optim. 61, 749–762 (2020)

    MathSciNet  Google Scholar 

  4. Wang, S., Sturler, E.D., Paulino, G.H.: Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int. J. Numer. Methods Eng. 69(12), 2441–2468 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Peng, Z., Chen, Y., Cheng, Y., Li, F.: A reduced basis method for radiative transfer equation. J. Sci. Comput. (2022). https://doi.org/10.1007/s10915-022-01782-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Lu, C., Zhu, X.: Bifidelity data-assisted neural networks in nonintrusive reduced-order modeling. J. Sci. Comput. 87(8), 1–30 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Copeland, D.M., Cheung, S.W., Huynh, K., Choi, Y.: Reduced order models for Lagrangian hydrodynamics. Comput. Methods Appl. Mech. Eng. 388, 114259 (2022)

    MathSciNet  MATH  Google Scholar 

  8. Fresca, S., Manzoni, A.: POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng. (2021)

  9. Guo, M., Hesthaven, J.S.: Data-driven reduced order modeling for time-dependent problems. Comput. Methods Appl. Mech. Eng. 345, 75–99 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Qian, W., Hesthaven, J., Ray, D.: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem. J. Comput. Phys. 384, 289–307 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Salvador, M., Dedè, L., Manzoni, A.: Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks. Comput. Math. Appl. 104, 1–13 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Schröder, C., Voigt, M.: Balanced truncation model reduction with a priori error bounds for LTI systems with nonzero initial value. J. Comput. Appl. Math. 420, 114708 (2023). https://doi.org/10.1016/j.cam.2022.114708

    Article  MathSciNet  MATH  Google Scholar 

  13. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016). https://doi.org/10.1073/pnas.1517384113

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, M., McQuarrie, S.A., Willcox, K.E.: Bayesian operator inference for data-driven reduced-order modeling. Comput. Methods Appl. Mech. Eng. 402, 115336 (2022). https://doi.org/10.1016/j.cma.2022.115336

    Article  MathSciNet  MATH  Google Scholar 

  15. Soize, C., Farhat, C.: A nonparametric probabilistic approach for quantifying uncertainties in low-dimensional and high-dimensional nonlinear models. Int. J. Numer. Methods Eng. 109, 837–888 (2017)

    MathSciNet  Google Scholar 

  16. Berrone, S., Vicini, F.: A reduced basis method for a PDE-constrained optimization formulation in discrete fracture network flow simulations. Comput. Math. Appl. 99, 182–194 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Liao, Q., Li, J.: An adaptive reduced basis ANOVA method for high-dimensional Bayesian inverse problems. J. Comput. Phys. 396, 364–380 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Guzzetti, S., Alvarez, L.M., Blanco, P.J., Carlberg, K.T., Veneziani, A.: Propagating uncertainties in large-scale hemodynamics models via network uncertainty quantification and reduced-order modeling. Comput. Methods Appl. Mech. Eng. 358, 112626 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Ohayon, R., Soize, C.: Advanced Computational Vibroacoustics: Reduced-Order Models and Uncertainty Quantification. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  20. Majda, A.J., Qi, D.: Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems. SIAM Rev. 60(3), 491549 (2018)

    MathSciNet  MATH  Google Scholar 

  21. McBane, S., Choi, Y.: Component-wise reduced order model lattice-type structure design. Comput. Methods Appl. Mech. Eng. 381, 113813 (2021). https://doi.org/10.1016/j.cma.2021.113813

    Article  MathSciNet  MATH  Google Scholar 

  22. McBane, S., Choi, Y., Willcox, K.: Stress-constrained topology optimization of lattice-like structures using component-wise reduced order models. Comput. Methods Appl. Mech. Eng. 400, 115525 (2022). https://doi.org/10.1016/j.cma.2022.115525

    Article  MathSciNet  MATH  Google Scholar 

  23. Amsallem, D., Zahr, M., Choi, Y., Farhat, C.: Design optimization using hyper-reduced-order models. Struct. Multidiscip. Optim. 51(4), 919–940 (2015)

    MathSciNet  Google Scholar 

  24. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015). https://doi.org/10.1137/130932715

    Article  MathSciNet  MATH  Google Scholar 

  25. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction, vol. 92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15431-2

    Book  MATH  Google Scholar 

  26. Jan, S., Hesthaven, B.S., Rozza, G.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer, Cham (2016)

    MATH  Google Scholar 

  27. Fresca, S., Dede’, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. J. Sci. Comput. 87(2), 1–36 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Guo, M., Hesthaven, J.S.: Reduced order modeling for nonlinear structural analysis using gaussian process regression. Comput. Methods Appl. Mech. Eng. 341, 807–826 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Schmid, P., Sesterhenn, J.: Dynamic mode decomposition of numerical and experimental data. In: Bull. Amer. Phys. Soc., 61st APS meeting, p. 208 (2008)

  30. Beltrán, V., Clainche, S.L., Vega, J.M.: An adaptive data-driven reduced order model based on higher order dynamic mode decomposition. J. Sci. Comput. 92, 12 (2022)

    MathSciNet  MATH  Google Scholar 

  31. McClarren, R.G., Haut, T.S.: Data-driven acceleration of thermal radiation transfer calculations with the dynamic mode decomposition and a sequential singular value decomposition. J. Comput. Phys. 448, 110756 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Patyn, C., Deconinck, G.: Dynamic mode decomposition for nonintrusive and robust model predictive control of residential heating systems. Energy Build. 254, 111450 (2022)

    Google Scholar 

  33. Lu, H., Tartakovsky, D.M.: Extended dynamic mode decomposition for inhomogeneous problems. J. Comput. Phys. 444(5923), 110550 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Yamamoto, T., Sakamoto, H.: Application of dynamic mode decomposition to exponential experiment for spatial decay constant determination. Ann. Nucl. Energy 162, 108506 (2021)

    Google Scholar 

  35. Yamamoto, T., Sakamoto, H.: Higher harmonic analyses of the Rossi-\(\alpha \) method and application of dynamic mode decomposition for time decay constant determination in a 1d subcritical system. Ann. Nucl. Energy 168, 108886 (2022)

    Google Scholar 

  36. Bistrian, D.A., Navon, I.M.: Randomized dynamic mode decomposition for non-intrusive reduced order modelling. Int. J. Numer. Methods Eng. 112, 3–25 (2017)

    Google Scholar 

  37. Kutz, J., Brunton, S., Brunton, B., Proctor, J.: Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM, Philadelphia (2016)

    MATH  Google Scholar 

  38. Gao, Z., Lin, Y., Sun, X., Zeng, X.: A reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition coupled with k-nearest-neighbors regression. J. Comput. Phys. 452, 110907 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Andreuzzi, F., Demo, N., Rozza, G.: A dynamic mode decomposition extension for the forecasting of parametric dynamical systems. Submitted. arXiv:2110.09155

  40. Hess, M., Quaini, A., Rozza, G.: A data-driven surrogate modeling approach for time-dependent incompressible Navier-Stokes equations with dynamic mode decomposition and manifold interpolation. Submitted. https://doi.org/10.48550/arXiv.2201.10872

  41. Lu, H., Tartakovsky, D.M.: Model Reduction via Dynamic Mode Decomposition. https://doi.org/10.48550/arXiv.2204.09590

  42. Huhn, Q., Tano, M.E., Ragusa, J.C., Choi, Y.: Parametric Dynamic Mode Decomposition for Reduced Order Modeling. arXiv preprint arXiv:2204.12006

  43. Ma, Z., Yu, J., Xiao, R.: Data-driven reduced order modeling for parametrized time-dependent flow problems. Phys. Fluids 34(7), 075109 (2022)

    Google Scholar 

  44. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Tu, J., Rowley, C., Luchtenburg, D., Brunton, S., Kutz, J.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Korda, M., Putinar, M., Mezić, I.: Data-driven spectral analysis of the Koopman operator. Appl. Comput. Harmon. Anal. 48(2), 599–629 (2020). https://doi.org/10.1016/j.acha.2018.08.002

    Article  MathSciNet  MATH  Google Scholar 

  47. Petar Bevanda, S.H., Stefan Sosnowski: Koopman operator dynamical models: learning, analysis and control. Annu. Rev. Control. 52, 197–212 (2021). https://doi.org/10.1016/j.arcontrol.2021.09.002

    Article  MathSciNet  Google Scholar 

  48. Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931)

    MATH  Google Scholar 

  50. Clarence, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech 641, 115–127 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Li, Q., Dietrich, F., Bollt, E.M., Kevrekidis, I.G.: Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos 27, 103111 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)

    MATH  Google Scholar 

  53. Schmidt, E.: Zur theorie der linearen und nichtlinearen interalgleichungen. I. Teil: entwicklung willkürlicher funktionen nach systemen vorgeschriebener. Math. Ann. 63, 433–476 (1907)

    MathSciNet  MATH  Google Scholar 

  54. MATLAB version (R2021b). The MathWorks Inc, Natick, Massachusetts

  55. McKinley, S., Levine, M.: Cubic spline interpolation. Coll. Redw. 45, 1049–1060 (1998)

    Google Scholar 

  56. Williams, C.K., Rasmussen, C.E.: Gaussian processes for regression. Adv. Neural Inf. Process. Syst. 8, 514–520 (1996)

    Google Scholar 

  57. Hemati, M.S., Rowley, C.W., Deem, E.A., Cattafesta, L.N.: De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets. Theor. Comput. Fluid Dyn. 31(4), 349–368 (2017). https://doi.org/10.1007/s00162-017-0432-2

    Article  Google Scholar 

  58. Sobol, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. Zh. Vychisl. Mat. Mat. Fiz. 7(4), 784–802 (1967)

    MathSciNet  Google Scholar 

  59. Suzuki, M.: Fourier-spectral methods for Navier Stokes equations in 2D. Submitted. http://www.math.mcgill.ca/gantumur/math595f14/NSMashbat.pdf

  60. Loève, M.: Probability Theory. Springer, New York (1977)

    MATH  Google Scholar 

  61. Sun, X., Choi, J.-I.: Non-intrusive reduced-order modeling for uncertainty quantification of space-time-dependent parameterized problems. Comput. Math. Appl. 87, 50–64 (2021). https://doi.org/10.1016/j.camwa.2021.01.015

    Article  MathSciNet  MATH  Google Scholar 

  62. Helton, J., Davis, F.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81(1), 23–69 (2003)

    Google Scholar 

Download references

Acknowledgements

The authors are partially supported by the Taishan Scholars Program (tsqn202211059), the National Natural Science Foundation of China (12201592), the Shandong Provincial Natural Science Foundation (ZR2022QA006) and Fundamental Research Funds for the Central Universities (202042004, 202213038, 202264006).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Sun.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Gao, Z., Chen, Y. et al. A Dynamic Mode Decomposition Based Reduced-Order Model For Parameterized Time-Dependent Partial Differential Equations. J Sci Comput 95, 70 (2023). https://doi.org/10.1007/s10915-023-02200-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02200-x

Keywords