Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A Unifying Approach to Robust Convex Infinite Optimization Duality

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper considers an uncertain convex optimization problem, posed in a locally convex decision space with an arbitrary number of uncertain constraints. To this problem, where the uncertainty only affects the constraints, we associate a robust (pessimistic) counterpart and several dual problems. The paper provides corresponding dual variational principles for the robust counterpart in terms of the closed convexity of different associated cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  2. Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: an overview. Eur. J. Oper. Res. 235, 471–483 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, A., Ben-Tal, A.: Duality in robust optimization: primal worst equals dual best. Oper. Res. Lett. 37, 1–6 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, G.Y., Jeyakumar, V., Lee, G.M.: Robust conjugate duality for convex optimization under uncertainty with application to data classification. Nonlinear Anal. 74, 2327–2341 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, W., Fang, D., Chen, Z.: Strong and total Fenchel dualities for robust convex optimization problems. J. Inequal. Appl. 70, 21 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Suzuki, S., Kuroiwa, D., Lee, G.M.: Surrogate duality for robust optimization. Eur. J. Oper. Res. 231, 257–262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jeyakumar, V., Li, G.Y.: Strong duality in robust convex programming: complete characterizations. SIAM J. Optim. 20, 3384–3407 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jeyakumar, V., Li, G.Y.: Robust duality for fractional programming problems with constraint-wise data uncertainty. J. Optim. Theory Appl. 151, 292–303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jeyakumar, V., Li, G.Y., Lee, G.M.: Robust duality for generalized convex programming problems under data uncertainty. Nonlinear Anal. 75, 1362–1373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goberna, M.A., Jeyakumar, V., Li, G., López, M.A.: Robust linear semi-infinite programming duality under uncertainty. Math. Program. 139B, 185–203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jeyakumar, V., Li, G.Y., Srisatkunarajah, S.: Strong duality for robust minimax fractional programming problems. Eur. J. Oper. Res. 228, 331–336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jeyakumar, V., Li, G.Y., Wang, J.H.: Some robust convex programs without a duality gap. J. Convex Anal. 20, 377–394 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Gorissen, B.L., Blanc, H., den Hertog, D., Ben-Tal, A.: Technical note—deriving robust and globalized robust solutions of uncertain linear programs with general convex uncertainty sets. Oper. Res. 62, 672–679 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeyakumar, V., Lee, G.M., Lee, J.H.: Generalized SOS-convexity and strong duality with SDP dual programs in polynomial optimization. J. Convex Anal. 22, 999–1023 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Wang, Y., Shi, R., Shi, J.: Duality and robust duality for special nonconvex homogeneous quadratic programming under certainty and uncertainty environment. J. Glob. Optim. 62, 643–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Boţ, R.I., Jeyakumar, V., Li, G.Y.: Robust duality in parametric convex optimization. Set Valued Var. Anal. 21, 177–189 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, X.-K., Chai, Y.: On robust duality for fractional programming with uncertainty data. Positivity 18, 9–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fang, D., Li, C., Yao, J.-C.: Stable Lagrange dualities for robust conical programming. J. Nonlinear Convex Anal. 16, 2141–2158 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Dinh, N., Mo, T.H., Vallet, G., Volle, M.: A unified approach to robust Farkas-type results with applications to robust optimization problems. SIAM J. Optim. 27, 1075–1101 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Barro, M., Ouédraogo, A., Traoré, S.: On uncertain conical convex optimization problems. Pac. J. Optim. 13, 29–42 (2017)

    MathSciNet  Google Scholar 

  21. Dinh, N., Goberna, M.A., López, M.A.: From linear to convex systems: consistency, Farkas lemma and applications. J. Convex Anal. 13, 279–290 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Goberna, M.A., López, M.A.: Linear Semi-infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  23. Dinh, N., Goberna, M.A., López, M.A., Son, T.Q.: New Frakas–Minkowski constraint qualifications in convex infinite programming. ESAIM COCV 13, 580–597 (2007)

    Article  MATH  Google Scholar 

  24. Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  25. Goberna, M.A., López, M.A., Volle, M.: Primal attainment in convex infinite optimization duality. J. Convex Anal. 21, 1043–1064 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Goberna, M.A., Jeyakumar, V., López, M.A.: Necessary and sufficient constraint qualifications for systems of infinite convex inequalities. Nonlinear Anal. 68, 1184–1194 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Goberna, M.A., López, M.A., Volle, M.: New glimpses on convex infinite optimization duality. Rev. R. Acad. Cienc. (Ser. A. Mat.) 109, 431–450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their constructive comments and helpful suggestions which have contributed to the final preparation of the paper. This research was supported by the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam, Project 101.01-2015.27, Generalizations of Farkas lemma with applications to optimization, by the Ministry of Economy and Competitiveness of Spain and the European Regional Development Fund (ERDF) of the European Commission, ProjectMTM2014-59179-C2-1-P, and by the Australian Research Council, Project DP160100854. Parts of the work of the first author were developed during his visit to the Department of Mathematics, University of Alicante, in July 2016, for which he would like to express his sincere thanks to the support and the hospitality he received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio López.

Additional information

Communicated by Radu Ioan Bot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, N., Goberna, M.A., López, M.A. et al. A Unifying Approach to Robust Convex Infinite Optimization Duality. J Optim Theory Appl 174, 650–685 (2017). https://doi.org/10.1007/s10957-017-1136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1136-x

Keywords

Mathematics Subject Classification