Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multiplierless lifting-based fast X transforms derived from fast Hartley transform factorization

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents M-channel (\(M=2^{N}\), \(N\in \mathbb {N}\), \(N\ge 1\)) multiplierless lifting-based (ML-) fast X transforms (FXTs), where X \(=\) F (Fourier), C (cosine), S (sine), and H (Hartley), i.e., FFT, FCT, FST, and FHT, derived from FHT factorization as way of lowering the cost of signal (image) processing. The basic forms of ML-FXTs are described. Then, they are customized for efficient image processing. The customized ML-FFT has a real-valued calculation followed by a complex-valued one. The ML-FCT customization for a block size of 8, which is a typical size for image coding, further reduces computational costs. We produce two customized ML-FCTs for lossy and lossless image coding. Numerical simulations show that ML-FFT and ML-FCTs perform comparably to the conventional methods in spite of having fewer operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Although it can be simply achieved by 3, 4, and 7 right shifters, we do not use it to avoid generating more rounding error.

  2. In the same way as Liang and Tran (2001) did, we used the floating-point coefficients of the scaling factors, which are always combined with the quantization steps and rounded to integers in practical implementations.

  3. The experiments in this paper show almost same results even if any image.

  4. More than 8 bit word length coefficients show almost same PSNRs.

References

  • Ahmed, N., & Rao, K. R. (1975). Orthogonal transforms for digital signal processing. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Beauchamp, K. (1984). Applications of Walsh and related functions. Cambridge: Academic Press.

    MATH  Google Scholar 

  • Bracewel, R. N. (1983). Discrete Hartley transform. Journal of the Optical Society of America, 73(12), 1832–1835.

    Article  Google Scholar 

  • Chen, Y. J., Oraintara, S., Tran, T. D., Amaratunga, K., & Nguyen, T. Q. (2002). Multiplierless approximation of transforms with adder constraint. IEEE Signal Processing Letters, 9(11), 344–347.

    Article  Google Scholar 

  • Chen, W. H., Smith, C. H., & Fralick, S. C. (1977). A fast computational algorithm for the discrete cosine transform. IEEE Transactions on Communications, 25(9), 1004–1009.

    Article  MATH  Google Scholar 

  • Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine computation of complex Fourier series. Mathematics of Computation, 19(90), 297–301.

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. Journal of Fourier Analysis and Applications, 4(3), 247–269.

    Article  MathSciNet  MATH  Google Scholar 

  • Duhamel, P. (1986). Implementation of “split-radix” FFT algorithms for complex, real, and real-symmetric date. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(2), 285–295.

    Article  MathSciNet  Google Scholar 

  • Duhamel, P., & Hollmann, H. (1984). ‘Split radix’ FFT algorithm. Electronics Letters, 20(1), 14–16.

    Article  Google Scholar 

  • Hewlitt, R. M., & Swartzlander, J. E. S. (2000). Canonical signed digit representation for FIR digital filters. In Proceedings of SiPS’00 (pp. 416–426). Lafayette, LA.

  • JPEG core experiment for the evaluation of JPEG XR image coding, EPFL, Multimedia Signal Processing Group. http://mmspg.epfl.ch/iqa.

  • Kumar, P., Park, S. Y., Mohanty, B. K., Lim, K. S., & Yeo, C. (2014). Efficient integer DCT architectures for HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 24(1), 168–178.

    Article  Google Scholar 

  • Lee, B. G. (1984). A new algorithm to compute the discrete cosine transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(6), 1243–1245.

    Article  MATH  Google Scholar 

  • Liang, J., & Tran, T. D. (2001). Fast multiplierless approximations of the DCT with the lifting scheme. IEEE Transactions on Signal Processing, 49(12), 3032–3044.

    Article  Google Scholar 

  • Liu, Z., & Karam, L. J. (2000). An efficient embedded zerotree wavelet image codec based on intraband partitioning. In Proceedings of ICIP’00. Vancouver, British Columbia, Canada.

  • Malvar, H. S. (1992). Signal processing with lapped transforms. Norwood, MA: Artech House.

    MATH  Google Scholar 

  • Meckelburg, H. J., & Lipka, D. (1985). Fast Hartley transform algorithm. IET Electronics Letters, 21(8), 311–313.

    Article  Google Scholar 

  • Oraintara, S. (2002). The unified discrete Fourier-Hartley transforms: Theory and structure. In: Proceedings of ISCAS’02 (pp. III–433–436). Scottsdale, AZ.

  • Oraintara, S., Chen, Y. J., & Nguyen, T. Q. (2002). Integer fast Fourier transform. IEEE Transactions on Signal Processing, 50(3), 607–618.

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, K. R., & Yip, P. (1990). Discrete cosine transform algorithms. Cambridge: Academic Press.

    MATH  Google Scholar 

  • Said, A., & Pearlman, W. A. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243–250.

    Article  Google Scholar 

  • Shapiro, J. M. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12), 3445–3462.

    Article  MATH  Google Scholar 

  • Sorensen, H. V., Heideman, M. T., & Burrus, C. S. (1986). On computing the split-radix FFT. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(1), 152–156.

    Article  Google Scholar 

  • Strang, G., & Nguyen, T. (1996). Wavelets and filter banks. Wellesley, MA: Wellesley-Cambridge Press.

    MATH  Google Scholar 

  • Sullivan, G. J., Ohm, J.-R., Han, W.-J., & Wiegand, T. (2012). Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649–1668.

    Article  Google Scholar 

  • Suzuki, T., Kyochi, S., Tanaka, Y., Ikehara, M., Aso, H. (2013). Multiplierless lifting based FFT via fast Hartley transform. In Proceedings of ICASSP’13 (pp. 5603–5607). Vancouver, Canada.

  • Suzuki, T., Tanaka, Y., Ikehara, M., Aso, H. (2012). Multiplierless fast algorithm for DCT via fast Hartley transform. In Proceedings of ICASSP’12 (pp. 3469–3472). Kyoto, Japan.

  • Suzuki, T., & Ikehara, M. (2010). Integer discrete cosine transform via lossless Walsh–Hadamard transform with structural regularity for low-bit-word-length. IEICE Transactions Fundamentals, 93(4), 734–741.

  • Suzuki, T., & Kudo, H. (2015). Extended block-lifting-based lapped transforms. IEEE Signal Processing Letter, 22(10), 1657–1660.

    Article  Google Scholar 

  • The USC-SIPI image database, University of Southern California, Signal and Image Processing Institute. http://sipi.usc.edu/database/.

  • Tran, T. D. (2000). The BinDCT: Fast multiplierless approximation of the DCT. IEEE Signal Processing Letters, 7(6), 141–144.

    Article  Google Scholar 

  • Tran, T. D., Liang, J., & Tu, C. (2003). Lapped transform via time-domain pre- and post-filtering. IEEE Transactions on Signal Processing, 6(6), 1557–1571.

    Article  MathSciNet  MATH  Google Scholar 

  • Wallace, G. K. (1992). The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics, 38(1), 18–34.

    Article  Google Scholar 

  • Wang, Z. (1984). Fast algorithms for the discrete W transform and for the discrete Fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(4), 803–816.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z. (1985). On computing the discrete Fourier and cosine transforms. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(4), 1341–1344.

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger, M. J., Seroussi, G., & Sapir, G. (2000). The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Transactions on Image Processing, 9(8), 1309–1324.

    Article  Google Scholar 

  • Wiegand, T., Sullivan, G. J., Bjøntegaard, G., & Luthra, A. (2003). Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560–576.

  • Xu, J., Wu, F., Liang, J., & Zhang, W. (2010). Directional lapped transforms for image coding. IEEE Transactions on Image Processing, 19(1), 85–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, S., Yeung, S.-K. A., & Zeng, B. (2010). In search of “better-than-DCT” unitary transforms for encoding of residual signals. IEEE Signal Processing Letters, 17(11), 961–964.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers, Dr. H. Aso, and Dr. K. Sugimoto for providing many constructive suggestions that significantly improve the presentation of this paper. This work was supported by a JSPS Grant-in-Aid for Young Scientists (B), Grant Number 16K18100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taizo Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Kyochi, S., Tanaka, Y. et al. Multiplierless lifting-based fast X transforms derived from fast Hartley transform factorization. Multidim Syst Sign Process 29, 99–118 (2018). https://doi.org/10.1007/s11045-016-0457-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0457-5

Keywords