Abstract
In previous papers, the projective factors are always chosen as real numbers, real matrices, or even real-valued functions, which means the coupled systems evolve in the same or inverse direction simultaneously. However, in many practical situations, the drive-response systems may evolve in different directions with a constant intersection angle. Therefore, the projective synchronization with respect to a complex factor, called complex projective synchronization (CPS), should be taken into consideration. In this paper, based on Lyapunov stability theory, three typical chaotic complex dynamical systems are considered and the corresponding controllers are designed to achieve the complex projective synchronization. Further, an adaptive control method is adopted to design a universal controller for partially linear systems. Numerical examples are provided to show the effectiveness of the proposed method.
Similar content being viewed by others
References
Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)
Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)
Pyragas, K.: Synchronization of coupled time-delay systems: analytical estimations. Phys. Rev. E 58, 3067–3071 (1998)
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002)
Li, C., Liao, X., Wong, K.: Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Physica D 194, 187–202 (2004)
Wu, X., Wang, H., Lu, H.: Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Anal., Real World Appl. 12, 1288–1299 (2011)
Kwon, O.M., Park, J.H., Lee, S.M.: Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011)
Chen, T.P., Liu, X.W., Lu, W.L.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I, Regul. Pap. 54, 1317–1326 (2007)
Li, K.Z., Small, M., Fu, X.C.: Generation of clusters in complex dynamical networks via pinning control. J. Phys. A, Math. Theor. 41, 505101 (2008)
Zhang, H.F., Li, K.Z., Fu, X.C., Wang, B.H.: An efficient control strategy of epidemic spreading on scale-free networks. Chin. Phys. Lett. 26, 068901 (2009)
Feng, J.W., Yam, P., Austin, F., Chen, X.: Synchronizing the noise-perturbed Rösler hyperchaotic system via sliding mode control. Z. Naturforsch. A 66, 6–12 (2011)
Choi, Y.P., Haa, S.Y., Yunb, S.B.: Complete synchronization of Kuramoto oscillators with finite inertia. Physica D 240, 32–44 (2011)
Li, X., Leung, A.C.S., Han, X., Liu, X., Chu, Y.: Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dyn. 63, 263–275 (2011)
Wang, Z., Shi, X.: Anti-synchronization of Liu system and Lorenz system with known or unknown parameters. Nonlinear Dyn. 57, 425–430 (2009)
Suresh, R., Senthilkumar, D.V., Lakshmanan, M., Kurths, J.: Global phase synchronization in an array of time-delay systems. Phys. Rev. E 82, 016215 (2010)
Ghosha, D., Chowdhury, A.R.: Lag and anticipatory synchronization based parameter estimation scheme in modulated time-delayed systems. Nonlinear Anal., Real World Appl. 11, 3059–3065 (2010)
Wang, X., Wang, M.: Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems. Nonlinear Dyn. 62, 567–571 (2010)
Hu, M., Xu, Z.: Adaptive feedback controller for projective synchronization. Nonlinear Anal., Real World Appl. 9, 1253–1260 (2008)
Nie, H., Xie, L., Gao, J., Zhan, M.: Projective synchronization of two coupled excitable spiral waves. Chaos 21, 023107 (2011)
Yu, Y., Li, H.: Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. Nonlinear Anal., Real World Appl. 12, 388–393 (2011)
Fowler, A.C., Gibbon, J.D., McGuinness, M.J.: The complex Lorenz equations. Physica D 4, 139–163 (1982)
Vladimirov, A.G., Toronov, V.Y., Derbov, V.L.: The complex Lorenz model: geometric structure, homoclinic bifurcation and one-dimensional map. Int. J. Bifurc. Chaos Appl. Sci. Eng. 8, 723–729 (1998)
Mahmoud, G.M., Aly, S.A., Farghaly, A.A.: On chaos synchronization of a complex two coupled dynamos system. Chaos Solitons Fractals 33, 178–187 (2007)
Nian, F., Wang, X., Niu, Y., Lin, D.: Module-phase synchronization in complex dynamic system. Appl. Math. Comput. 217, 2481–2489 (2010)
Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62, 875–882 (2010)
Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: Active control and global synchronization for complex Chen and Lü systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 4295–4308 (2007)
Hu, M., Yang, Y., Xu, Z., Guo, L.: Hybrid projective synchronization in a chaotic complex nonlinear system. Math. Comput. Simul. 79, 449–457 (2008)
Mahmoud, G.M., Bountis, T., AbdEl-Latif, G.M., Mahmoud, E.E.: Chaos synchronization of two different chaotic complex Chen and Lü systems. Nonlinear Dyn. 55, 43–53 (2009)
Mahmoud, G.M., Aly, S.A., AL-Kashif, M.A.: Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dyn. 51, 171–181 (2008)
Liu, S., Liu, P.: Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Anal., Real World Appl. (2011). doi:10.1016/j.nonrwa.2011.05.006
Sun, Y.J.: Generalized projective synchronization for a class of chaotic systems with parameter mismatching, unknown external excitation, and uncertain input nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 16, 3863–3870 (2011)
Ghosh, D.: Generalized projective synchronization in time-delayed systems: nonlinear observer approach. Chaos 19, 013102 (2009)
Cai, N., Jing, Y., Zhang, S.: Modified projective synchronization of chaotic systems with disturbances via active sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 15, 1613–1620 (2010)
Wen, G.: Designing Hopf limit circle to dynamical systems via modified projective synchronization. Nonlinear Dyn. 63, 387–393 (2011)
Wu, Z., Fu, X.: Adaptive function projective synchronization of discrete chaotic systems with unknown parameters. Chin. Phys. Lett. 27, 050502 (2010)
Du, H., Zeng, Q., Wang, C., Ling, M.: Function projective synchronization in coupled chaotic systems. Nonlinear Anal., Real World Appl. 11, 705–712 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, Z., Duan, J. & Fu, X. Complex projective synchronization in coupled chaotic complex dynamical systems. Nonlinear Dyn 69, 771–779 (2012). https://doi.org/10.1007/s11071-011-0303-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-011-0303-0