Abstract
Our aim in this paper is to study strong convergence results for L-Lipschitz continuous monotone variational inequality but L is unknown using a combination of subgradient extra-gradient method and viscosity approximation method with adoption of Armijo-like step size rule in infinite dimensional real Hilbert spaces. Our results are obtained under mild conditions on the iterative parameters. We apply our result to nonlinear Hammerstein integral equations and finally provide some numerical experiments to illustrate our proposed algorithm.
Similar content being viewed by others
References
Antipin, A. S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i Matematicheskie Metody 12, 1164–1173 (1976)
Apostol, R. Y., Grynenko, A. A., Semenov, V. V.: Iterative algorithms for monotone bilevel variational inequalities. J. Comp. Appl. Math. 107, 3–14 (2012)
Aubin, J. -P., Ekeland, I.: Applied nonlinear analysis. Wiley, New York (1984)
Banas, J.: Integrable solutions of Hammerstein and Uryshon integral equations. J. Aust. Math. Soc. A 46, 61–68 (1989)
Banas, J., Knap, Z.: Measure of weak noncompactness and nonlinear integral equations of convolution type. J. Math. Anal. Appl. 146, 353–362 (1990)
Baiocchi, C., Capelo, A.: Variational and quasivariational inequalities: applications to free boundary problems. Wiley, New York (1984)
Bauschke, H. H., Combettes, P. L.: Convex analysis and monotone operator theory in Hilbert Spaces, CMS Books in Mathematics. Springer, New York (2011)
Berinde, V.: Iterative approximation of fixed points 1912 (2007). ISBN 978-3-540-72233-5.
Bnouhachem, A.: A self-adaptive method for solving general mixed variational inequalities. J. Math. Anal. Appl. 309, 136–150 (2005)
Brez̀is, H., Browder, F. E.: Some new results about Hammerstein equations. Bull. Amer. Math. Soc. 80, 567–572 (1974)
Brez̀is, H., Browder, F. E.: Existence theorems for nonlinear integral equations of Hammerstein type. Bull. Amer. Math. Soc. 81, 73–78 (1975)
Brez̀is, H., Browder, F. E.: Nonlinear integral equations and system of Hammerstein type. Advances in Math. 18, 115–147 (1975)
Browder, F. E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Amer. Math. Soc. 73, 875–882 (1967)
Browder, F. E., Figueiredo, D. G., Gupta, P.: Maximal monotone operators and a nonlinear integral equations of Hammerstein type. Bull. Amer. Math Soc. 76, 700–705 (1970)
Browder, F. E., Gupta, P.: Monotone operators and nonlinear integral equations of Hammerstein type. Bull. Amer. Math Soc. 75, 1347–1353 (1969)
Cegielski, A.: Iterative methods for fixed point problems in Hilbert Spaces, Lecture Notes in Mathematics 2057. Springer, Berlin (2012). ISBN 978-3-642-30900-7
Ceng, L. -C., Hadjisavvas, N., Wong, N. -C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Global Optimization 46, 635–646 (2010)
Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Software 26, 827–845 (2011)
Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)
Chepanovich, R. S. h.: Nonlinear Hammerstein equations and fixed points,. Publ. Inst. Math. (Beograd) N. S. 35, 119–123 (1984)
Chidume, C. E.: Geometric properties of Banach spaces and nonlinear iterations, vol. 1965, p XVII, 326. Springer Verlag series: lecture notes in mathematics (2009). ISBN 978-1-84882-189-7
Chidume, C. E., Ofoedu, E. U.: Solution of nonlinear integral equations of Hammerstein type. Nonlinear Anal. 74, 4293–4299 (2011)
Chidume, C. E., Shehu, Y.: Strong convergence theorem for approximation of solutions of equations of Hammerstein type. Nonlinear Anal. 75, 5664–5671 (2012)
Chidume, C. E., Shehu, Y.: Iterative approximation of solutions of equations of Hammerstein type in certain Banach spaces. Appl. Math. Comput. 219, 5657–5667 (2013)
Chidume, C. E., Zegeye, H.: Approximation of solutions nonlinear equations of Hammerstein type in Hilbert space. Pro. Amer. Math. Soc. 133, 851–858 (2005)
Dolezale, V.: Monotone operators: its applications in automation and network theory, Studies in Automation and control. Elesevier Science Publ, New York (1979)
Emmanuele, G.: Integrable solutions of a functional-integral equation. J. Integral Equations Appl. 4, 89–94 (1992)
Emmanuele, G.: An existence theorem for Hammerstein integral equations. Port. Math. 51, 607–611 (1994)
De Figueiredo, D. G., Gupta, C. P.: On the variational methods for the existence of solutions to nonlinear equations of Hammerstein type. Bull. Amer. Math. Soc. 40, 470–476 (1973)
Facchinei, F., Pang, J. -S.: Finite-dimensional variational inequalities and complementarity problems, vol. II. Springer Series in Operations Research, Springer, New York (2003)
Fang, C., Chen, S.: Some extragradient algorithms for variational inequalities. Advances in variational and hemivariational inequalities, 145-171, Adv. Mech Math., vol. 33. Springer, Cham (2015)
Gibali, A.: A new non-Lipschitzian projection method for solving variational inequalities in Euclidean spaces. J. Nonlinear Anal. Optim. 6, 41–51 (2015)
Glowinski, R., Lions, J. -L., Trémolierès, R.: Numerical analysis of variational inequalities. North-Holland, Amsterdam (1981)
Hammerstein, A.: Nichtlineare integralgleichungen nebst anwendungen. Acta Math. 54, 117–176 (1930)
He, B. -S., Yang, Z. -H., Yuan, X. -M.: An approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl. 300, 362–374 (2004)
Iusem, A. N., Nasri, M.: Korpelevich’s method for variational inequality problems in Banach spaces. J. Global Optim. 50, 59–76 (2011)
Iusem, A. N., Svaiter, B. F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997)
Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. Academic, New York (1980)
Korpelevich, G. M.: The extragradient method for finding saddle points and other problems. Ekonomika i Matematicheskie Metody 12, 747–756 (1976)
Konnov, I. V.: Combined relaxation methods for variational inequalities. Springer, Berlin (2001)
Latracha, K., Taoudi, M. A.: Existence results for a generalized nonlinear Hammerstein equation on l 1 spaces. Nonlinear Anal. 66, 2325–2333 (2007)
Lyashko, S. I., Semenov, V. V., Voitova, T. A.: Low-cost modification of Korpelevich’s method for monotone equilibrium problems. Cybern. Syst. Anal. 47, 631–639 (2011)
Khobotov, E. N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1989)
Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)
Mainge, P. E., Gobinddass, M. L.: Convergence of one-step projected gradient methods for variational inequalities. In press: J. Optim. Theory Appl. doi:10.1007/s10957-016-0972-4
Mainge, P. E.: Numerical approach to monotone variational inequalities by a one-step projected reflected gradient method with line-search procedure 72(3), 720–728 (2016)
Malitsky, Y. u. V., Semenov, V. V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Global Optim. 61, 193–202 (2015)
Mann, W. R.: Mean value methods in iterations. Bull. Amer. Math. Soc. 4, 506–510 (1953)
Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)
Nagurney, A.: Network economics: a variational inequality approach. Kluwer Academic Publishers, Dordrecht (1999)
Shehu, Y.: Strong convergence theorem for integral equations of Hammerstein type in Hilbert spaces. Appl. Math. Comput. 231, 140–147 (2014)
Shehu, Y.: Convergence theorems for maximal monotone operators and fixed point problems in Banach spaces. Appl. Math. Comput. 239, 285–298 (2014)
Solodov, M. V., Svaiter, B. F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)
Takahashi, W.: Nonlinear functional analysis. Yokohama Publishers, Yokohama (2000)
Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)
Xu, H. K.: Iterative algorithm for nonlinear operators. J. London Math. Soc. 66(2), 1–17 (2002)
Author information
Authors and Affiliations
Corresponding author
Additional information
The First Author is currently an Alexander von Humboldt Postdoctoral Fellow at the Institute of Mathematics, University of Wurzburg, Germany.
Rights and permissions
About this article
Cite this article
Shehu, Y., Iyiola, O.S. Strong convergence result for monotone variational inequalities. Numer Algor 76, 259–282 (2017). https://doi.org/10.1007/s11075-016-0253-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-016-0253-1
Keywords
- Subgradient extragradient method
- Viscosity method
- Variational inequalities
- Strong convergence
- Hilbert spaces