Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An iterated quasi-interpolation approach for derivative approximation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Given discrete function values sampled at uniform centers, the iterated quasi-interpolation approach for approximating the m th derivative consists of two steps. The first step adopts m successive applications of the operator DQ (the quasi-interpolation operator Q first, and then the differentiation operator D) to get approximated values of the m th derivative at uniform centers. Then, by one further application of the quasi-interpolation operator Q to corresponding approximated derivative values gives the final approximation of the m th derivative. The most salient feature of the approach is that it approximates all derivatives with the same convergence rate. In addition, it is valid for a general multivariate function, compared with the existing iterated interpolation approaches that are only valid for periodic functions, so far. Numerical examples of approximating high-order derivatives using both the iterated and direct approach based on B-spline quasi-interpolation and multiquadric quasi-interpolation are presented at the end of the paper, which demonstrate that the iterated quasi-interpolation approach provides higher approximation orders than the corresponding direct approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beatson, R., Dyn, N.: Multiquadric B-splines. J. Approx. Theory 87, 1–24 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Beatson, R., Powell, M.: Univariate multiquadric approximation: quasi-interpolation to scattered data. Constr. Approx. 8, 275–288 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Buhmann, M.: Convergence of univariate quasi-interpolation using multiquadrics. IMA J. Numer. Anal. 8, 365–383 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Buhmann, M.: On quasi-interpolation with radial basis functions. J. Approx. Theory 72, 103–130 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Buhmann, M.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, UK (2004)

    MATH  Google Scholar 

  6. Buhmann, M.: On quasi-interpolation by radial basis function with scattered centers. Construct. Approx. 11, 239–254 (1995)

    MATH  Google Scholar 

  7. Buhmann, M., Dai, F.: Pointwise approximation with quasi-interpolation by radial basis functions. J. Approx. Theory 192, 156–192 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Cecil, T., Qian, J., Osher, S.: Numerical methods for high dimensional Hamiltonian-Jocabian equations using radial basis functions. J. Comput. Phys. 196, 327–347 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Cheney, E.: Introduction to Approximation Theory, 2nd edn. Chelsea, New York (1982)

    MATH  Google Scholar 

  10. Davydov, O., Schaback, R.: Error bounds for kernel-based numerical differentiation. Numer. Math. 132, 243–269 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Davydov, O., Schaback, R.: Minimal numerical differentiation formulas. Numer. Math. 140, 555–592 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Davydov, O., Schaback, R.: Optimal stencils in Sobolev spaces. IMA J. Numer. Anal. 39, 398–422 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Fasshauer, G.E.: Meshfree approximation methods with MATLAB. World Scientific Publishing Co. Pte. Ltd (2007)

  14. Franke, R.: Scattered data intepolations: tests of some methods. Math. Comp. 38, 181–200 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Foucher, F., Sablonniére, P.: Approximating partial derivatives of first and second order by quadratic spline quasi-interpolants on uniform meshes. Math. Comput. Simul. 77, 202–208 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Fuselier, E., Wright, G.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56, 535–565 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Fuselier, E., Wright, G.: Order-preserving derivative approximation with periodic radial basis functions. Adv. Comput. Math. 41, 23–53 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Gao, W.W., Wu, Z.M.: A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines. J. Comput. Appl. Math. 271, 20–30 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Gao, W.W., Wu, Z.M.: Approximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolant. Comput. Math. Appl. 69, 696–707 (2015)

    MathSciNet  Google Scholar 

  20. Gasser, T., Müller, H.: Estimating regression functions and their derivatives by the kernel method. Scandinavian J. Statis. 11, 171–185 (1984)

    MathSciNet  MATH  Google Scholar 

  21. Grohs, P.: Quasi-interpolation in Riemannian manifolds. IMA J. Numer. Anal. 33, 849–874 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Jetter, K., Zhou, D.X.: Order of linear approximation from shift-invariant spaces. Construct. Approx. 11, 423–438 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Jia, R.Q., Lei, J.J.: A new version of Strang-Fix conditions. J. Approx. Theory 74, 221–225 (1993)

    MathSciNet  MATH  Google Scholar 

  24. Light, W.A., Cheney, E.W.: Quasi-interpolation with translates of a function having noncompact support. Construct. Approx. 8, 35–48 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Ling, L.: Finding numerical derivatives for unstructured and noisy data by multiscale kernels. SIAM J. Numer. Anal. 44, 1780–1800 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Ma, L.M., Wu, Z.M.: Approximation to the k-th derivatives by multiquadric quasi-intepolation method. J. Comp. Appl. Math. 2, 925–932 (2009)

    MATH  Google Scholar 

  27. Ma, L.M., Wu, Z.M.: Stability of multiquadric quasi-interpolation to approximate high order derivatives. Sci. China Math. 53, 985–992 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Narcowich, F.J., Schaback, R., Ward, J.D.: Approximation in Sobolev spaces by kernel expansions. J. Approx. Theory 114, 70–83 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Narcowich, F.J., Sun, X.P., Ward, J.D., Wendland, H.: Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions. Found. Comput. Math. 7, 369–390 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Narcowich, F.J., Rowe, S.T., Ward, J.D.: A novel Galerkin method for solving PDES on the sphere using highly localized kernel bases. Math. Comput. 86, 197–231 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Plonka, G., Tasche, M.: Prony methods for recovery of structured functions. GAMM-Mitt. 37, 239–258 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Potts, D., Tasche, M.: Parameter estimation for nonincreasing sums by Prony-like methods. Linear Algebra Appl. 439, 1024–1039 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Rabut, C.: An introduction to Schoenberg’s approximation. Comput. Math. Appl. 24, 139–175 (1991)

    MathSciNet  Google Scholar 

  34. Ramming, T., Wendland, H.: Kernel-based discretization method for first order patrial differential equations. Math. Comput. 87, 1757–1781 (2018)

    MATH  Google Scholar 

  35. Schaback, R., Wu, Z.M.: Construction techniques for highly accurate quasi-interpolation operators. J. Approx. Theory 91, 320–331 (1997)

    MathSciNet  MATH  Google Scholar 

  36. Schumaker, L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, NewYork (2007)

    MATH  Google Scholar 

  37. Shelley, M.J., Baker, G.: Order-preserving approximations to successive derivatives of periodic functions by iterated splines. SIAM J. Numer. Anal. 25, 1442–1452 (1988)

    MathSciNet  MATH  Google Scholar 

  38. Shu, C., Ding, H., Yeo, K.S.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 192, 941–954 (2003)

    MATH  Google Scholar 

  39. Smith, P.W., Ward, J.D.: Quasi-interpolants from spline interpolation operators. Construct. Approx. 6, 97–110 (1990)

    MathSciNet  MATH  Google Scholar 

  40. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton (1971)

    MATH  Google Scholar 

  41. Fix, G., Strang G.: A Fourier analysis of the finite element method. Constructive Aspects of Functional Analysis, CIME I 1, 793–840 (1970)

    Google Scholar 

  42. Vainikko, E., Vainikko, G.: A spline product quasi-interpolation method for weakly singular Fredholm integral equations. SIAM J. Numer. Anal. 46, 1799–1820 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Wahba, G.: Smoothing noisy data with spline functions. Numer. Math. 24, 383–393 (1975)

    MathSciNet  MATH  Google Scholar 

  44. Wei, T., Hon, Y.C., Cheng, J.: Reconstruction of numerical derivatives from scattered noisy data. Inverse Probl. 21, 657–672 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Wright, G.B.: Radial Basis Function Interpolation: Numerical and Analytical Developments. PhD. Thesis, University of Colorado, Boulder (2003)

  46. Wu, Z.M., Schaback, R.: Shape preserving properties and convergence of univariate multiquadric quasi-interpolation. Acta Math. Appl. Sin. 10, 441–446 (1994)

    MathSciNet  MATH  Google Scholar 

  47. Wu, Z.M., Liu, J.P.: Generalized Strang-Fix condition for scattered data quasi-interpolation. Adv. Comput. Math. 23, 201–214 (2005)

    MathSciNet  MATH  Google Scholar 

  48. Wu, Z.M., Sun, X.P., Ma, L.M.: Sampling scattered data with Bernstein polynomials: stochastic and deterministic error estimates. Adv. Comput. Math. 38, 187–205 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Wu, Z.M., Zhang, R.: Learning physics by data for the motion of a sphere falling in a non-Newtonian fluid. Commun. Nonlinear Sci. Numer. Simul. 67, 577–593 (2019)

    MathSciNet  Google Scholar 

  50. Zhu, C.G., Wang, R.H.: Numerical solution of Burgers’ equation by cubic B-spline quasi-interpolation. Appl. Math. Comput. 208, 260–272 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to the editor and the referee for insightful comments and valuable suggestions that helped us to improve the presentation of the manuscript.

Funding

This work is supported by NSFC (11871074, 11501006, 61672032), NSFC Key Project (11631015,91330201), Hong Kong Scholars Program (2018046), SGST (12DZ 2272800), Fund of Introducing Leaders of Science and Technology of Anhui University (J10117700057), the 4th Project of Cultivating Backbone of Young Teachers of Anhui University (J01005138), and Anhui Provincial Science and Technology Major Project (16030701091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwu Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wu, Z. & Gao, W. An iterated quasi-interpolation approach for derivative approximation. Numer Algor 85, 255–276 (2020). https://doi.org/10.1007/s11075-019-00812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00812-9

Keywords

Mathematics Subject Classification (2010)