Abstract
Améndola et al. proposed a method for solving systems of polynomial equations lying in a family which exploits a recursive decomposition into smaller systems. A family of systems admits such a decomposition if and only if the corresponding Galois group is imprimitive. When the Galois group is imprimitive, we consider the problem of computing an explicit decomposition. A consequence of Esterov’s classification of sparse polynomial systems with imprimitive Galois groups is that this decomposition is obtained by inspection. This leads to a recursive algorithm to compute complex isolated solutions to decomposable sparse systems, which we present and give evidence for its efficiency.
Similar content being viewed by others
References
Améndola, C., Rodriguez, J.I.: Solving parameterized polynomial systems with decomposable projections. arXiv:1612.08807 (2016)
Bates, D. J., Hauenstein, J. D., Sommese, A. J.: A parallel endgame. In: Randomization, relaxation, and complexity in polynomial equation solving. Contemp. Math., vol. 556, pp 25–35. Amer. Math. Soc., Providence (2011)
Bernstein, D. N.: The number of roots of a system of equations. Funkcional Anal. i Priložen 9(3), 1–4 (1975)
Brysiewicz, T., Rodriguez, J.I., Sottile, F., Yahl, T.: Software for decomposable sparse polynomial systems, https://www.math.tamu.edu/~thomasjyahl/research/DSS/DSSsite.html (2020)
Chen, T.: Unmixing the mixed volume computation. Discrete Comput. Geom. 62, 55–86 (2019)
Derksen, H., Kemper, G.: Computational Invariant Theory. Invariant Theory and Algebraic Transformation Groups, I. Springer, Berlin (2002). Encyclopaedia of Mathematical Sciences, 130
Duff, T., Hill, C., Jensen, A., Lee, K., Leykin, A., Sommars, J.: Solving polynomial systems via homotopy continuation and monodromy. IMA J. Numer. Anal. 39(3), 1421–1446 (2019)
Esterov, A.: Galois theory for general systems of polynomial equations. Compos. Math. 155(2), 229–245 (2019)
Ewald, G.: Combinatorial convexity and algebraic geometry. Graduate Texts in Mathematics, vol. 168. Springer, New York (1996)
Garcia, C. B., Zangwill, W. I.: Finding all solutions to polynomial systems and other systems of equations. Math. Program. 16(1), 159–176 (1979)
Gross, E., Petrović, S., Verschelde, J.: Interfacing with PHCpack. J. Softw. Algebra Geom. 5, 20–25 (2013)
Harris, J.: Galois groups of enumerative problems. Duke Math. J. 46(4), 685–724 (1979)
Hauenstein, J. D., Sottile, F.: Algorithm 921: alphacertified: certifying solutions to polynomial systems. ACM Transactions on Mathematical Software (TOMS) 38(4), 28 (2012)
Hermite, C.: Sur les fonctions algébriques. CR Acad. Sci.(Paris) 32, 458–461 (1851)
Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comp. 64(212), 1541–1555 (1995)
Huber, B., Verschelde, J.: Polyhedral end games for polynomial continuation. Numer. Algorithms 18(1), 91–108 (1998)
Kušnirenko, A. G.: Newton polyhedra and Bezout’s theorem. Funkcional. Anal. i Priložen 10(3), 82–83 (1976)
Li, T. Y., Sauer, T., Yorke, J. A.: The cheater’s homotopy: an efficient procedure for solving systems of polynomial equations. SIAM J. Numer. Anal. 26(5), 1241–1251 (1989)
Martín del Campo-Sanchez, A., Sottile, F., Williams, R.: Classification of Schubert Galois groups in Gr(4, 9), arXiv:1902.06809 (2019)
Morgan, A. P.: Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems. Prentice Hall Inc., Englewood Cliffs (1987)
Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29(2), 123–160 (1989). part II
Munkres, J. R.: Topology: a First Course. Prentice-Hall Inc., Englewood Cliffs (1975)
Pirola, G. P., Schlesinger, E.: Monodromy of projective curves. J. Algebraic Geom. 14(4), 623–642 (2005)
Smale, S.: Newton’s Method Estimates from Data at One Point. The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, pp 185–196. Springer, New York (1986)
Sommese, A. J., Wampler II, C. W.: The Numerical Solution of Systems of Polynomials. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005)
Sottile, F., Williams, R., Ying, L.: Galois groups of compositions of Schubert problems. arXiv:1910.06843 (2019)
Steffens, R., Theobald, T.: Mixed volume techniques for embeddings of Laman graphs. Comput. Geom. 43(2), 84–93 (2010)
Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999). Available at http://www.math.uic.edu/~jan
Wielandt, H.: Finite Permutation Groups. Translated from the German by R. Bercov. Academic Press, New York-London (1964)
Funding
Research of Sottile supported by grant 636314 from the Simons Foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Brysiewicz, T., Rodriguez, J.I., Sottile, F. et al. Solving decomposable sparse systems. Numer Algor 88, 453–474 (2021). https://doi.org/10.1007/s11075-020-01045-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-01045-x