Abstract
Computing mixed volume of convex polytopes is an important problem in computational algebraic geometry. This paper establishes sufficient conditions under which the mixed volume of several convex polytopes exactly equals the normalized volume of the convex hull of their union. Under these conditions the problem of computing mixed volume of several polytopes can be transformed into a volume computation problem for a single polytope in the same dimension. We demonstrate through problems from real world applications that substantial reduction in computational costs can be achieved via this transformation in situations where the convex hull of the union of the polytopes has less complex geometry than the original polytopes. We also discuss the important implications of this result in the polyhedral homotopy method for solving polynomial systems.
Similar content being viewed by others
Notes
An alternative definition for mixed volume is the coefficient of \(\lambda _1 \cdots \lambda _n\) in that polynomial divided by n!
Here, a point \(\mathbf {x}\in \mathbb {V}^*(P)\) is said to be isolated (a.k.a. geometrically isolated) if there is an open set in \((\mathbb {C}^*)^n\) that contains \(\mathbf {x}\) but does not contain any other points in \(\mathbb {V}^*(P)\).
There are several related concepts of “synchronization” in this context, which are listed in [30]. Here we only study a version of the so called frequency synchronization, a.k.a. frequency critical points. In the general context such points are characterized by all \(\frac{d\theta _i}{dt}\) converging to a common value (not necessarily zero). However, after switching to a rotational frame of reference, it is equivalent to requiring \(\frac{d\theta _i}{dt} = 0\) for \(i=0,\ldots ,n\).
Actually, the stronger Li–Wang extension [59] of the BKK bound was used in this analysis. This extension produces an upper bound of the root count of a polynomial system in \(\mathbb {C}^n\) (rather than \((\mathbb {C}^*)^n\)). Alternatively, the stable mixed cells method [44] could potentially produce even tighter root count bound in \(\mathbb {C}^n\), though it is more difficult to compute.
Since most of the software packages to be used rely on randomized algorithms, the average of CPU time from 5 different runs are used in Table 1. All runs are performed on the same workstation equipped with an \(\textsf {Intel}^{\textregistered }\textsf { Core}^{\textsf {TM}} \textsf {i5-3570K}\) processor running at 3.4GHz. For a meaningful comparison, Hom4PS-3, which is designed to compute mixed volume in parallel, is configured to use only one thread (serial mode) in this case.
References
Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137–185 (2005). https://doi.org/10.1103/RevModPhys.77.137
Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer Series in Computational Mathematics, vol. 13. Springer, Berlin (1990)
Attardi, G., Traverso, C.: The PoSSo library for polynomial system solving. In: Proc. of AIHENP95 (1995)
Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992). https://doi.org/10.1007/BF02293050
Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1993)
Baillieul, J.: The critical point analysis of electric power systems. In: The 23rd IEEE Conference on Decision and Control, pp. 154–159. IEEE (1984). https://doi.org/10.1109/CDC.1984.272291
Baillieul, J., Byrnes, C.I.: Geometric critical point analysis of lossless power system models. IEEE Trans. Circuits Syst. 29(11), 724–737 (1982). https://doi.org/10.1109/TCS.1982.1085093
Bernshtein, D.N.: The number of roots of a system of equations. Funct. Anal. Appl. 9(3), 183–185 (1975)
Bernshtein, D.N., Kushnirenko, A.G., Khovanskii, A.G.: Newton polyhedra. Uspekhi Mat. Nauk 31(3(189)), 201–202 (1976)
Bihan, F., Soprunov, I.: Criteria for strict monotonicity of the mixed volume of convex polytopes. arXiv:1702.07676 [math] (2017)
Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: a practical study. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes-Combinatorics and Computation. DMV Seminar, vol. 29, pp. 131–154. Birkhäuser, Basel (2000). https://doi.org/10.1007/978-3-0348-8438-9_6
Canny, J., Rojas, J.M.: An optimal condition for determining the exact number of roots of a polynomial system. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation (ISSAC’91), pp. 96–102. ACM, New York (1991). https://doi.org/10.1145/120694.120707
Cartwright, D., Sturmfels, B.: The number of eigenvalues of a tensor. Linear Algebra Appl. 438(2), 942–952 (2013). https://doi.org/10.1016/j.laa.2011.05.040
Chang, K.C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350(1), 416–422 (2009). https://doi.org/10.1016/j.jmaa.2008.09.067
Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods. arXiv:1501.04201 [math] (2015)
Chen, T.: libtropicana: v0.1.1 (2016). https://doi.org/10.5281/zenodo.57133
Chen, T.: On the equality of BKK bound and birationally invariant intersection index (2018). arXiv:1812.05408
Chen, T., Davis, R.: A product formula for the normalized volume of free sums of lattice polytopes (2017). arXiv:1711.11130
Chen, T., Davis, R.: A toric deformation method for solving Kuramoto equations (2018). arXiv:1810.05690
Chen, T., Davis, R., Mehta, D.: Counting equilibria of the Kuramoto model using birationally invariant intersection index. SIAM J. Appl. Algebra Geom. 2(4), 489–507 (2018). https://doi.org/10.1137/17M1145665
Chen, T., Lee, T.L., Li, T.Y.: Hom4PS-3: a parallel numerical solver for systems of polynomial equations based on polyhedral homotopy continuation methods. In: Hong, H., Yap, C. (eds.) Mathematical Software (ICMS 2014). Lecture Notes in Computer Science, vol. 8592, pp. 183–190. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-44199-2_30
Chen, T., Lee, T.-L., Li, T.-Y.: Mixed volume computation in parallel. Taiwan. J. Math. 18(1), 93–114 (2014)
Chen, T., Lee, T.-L., Li, T.-Y.: Mixed cell computation in Hom4PS-3. J. Symb. Comput. 79(Part 3), 516–534 (2017). https://doi.org/10.1016/j.jsc.2016.07.017
Chen, T., Li, T.-Y.: Solutions to systems of binomial equations. Ann. Math. Sil. 28, 7–34 (2014)
Chen, T., Li, T.-Y.: Homotopy continuation method for solving systems of nonlinear and polynomial equations. Commun. Inf. Syst. 15(2), 119–307 (2015). https://doi.org/10.4310/CIS.2015.v15.n2.a1
Chen, T., Mehta, D.: On the network topology dependent solution count of the algebraic load flow equations. IEEE Trans. Power Syst. 33(2), 1451–1460 (2018)
Chen, T., Mehta, D., Niemerg, M.: A network topology dependent upper bound on the number of equilibria of the Kuramoto model. arXiv:1603.05905 [nlin] (2016)
Dekker, A.H., Taylor, R.: Synchronization properties of trees in the Kuramoto model. SIAM J. Appl. Dyn. Syst. 12(2), 596–617 (2013). https://doi.org/10.1137/120899728
Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36(3), 1073–1099 (2015). https://doi.org/10.1137/140975656
Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: A survey. Autom. J. IFAC 50(6), 1539–1564 (2014). https://doi.org/10.1016/j.automatica.2014.04.012
Dyer, M., Gritzmann, P., Hufnagel, A.: On the complexity of computing mixed volumes. SIAM J. Comput. 27(2), 356–400 (1998). https://doi.org/10.1137/S0097539794278384
Emiris, I.Z., Canny, J.F.: Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symb. Comput. 20(2), 117–149 (1995). https://doi.org/10.1006/jsco.1995.1041
Emiris, I.Z., Vidunas, R.: Root counts of semi-mixed systems, and an application to counting Nash equilibria. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC 2014), pp. 154–161. ACM, New York (2014). https://doi.org/10.1145/2608628.2608679
Gao, T., Li, T.Y.: Mixed volume computation via linear programming. Taiwan. J. Math. 4(4), 599–619 (2000). 10.11650/tjm.4.2000.1295
Gao, T., Li, T.Y.: Mixed volume computation for semi-mixed systems. Discrete Comput. Geom. 29(2), 257–277 (2003). https://doi.org/10.1007/s00454-002-2837-x
Gao, T., Li, T.Y., Wu, M.: Algorithm 846: MixedVol: a software package for mixed-volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005). https://doi.org/10.1145/1114268.1114274
Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994). https://doi.org/10.1007/978-0-8176-4771-1_1
Gunji, T., Kim, S., Kojima, M., Takeda, A., Fujisawa, K., Mizutani, T.: PHoM—a polyhedral homotopy continuation method for polynomial systems. Computing 73(1), 57–77 (2004)
Guo, S.X., Salam, F.M.A.: Determining the solutions of the load flow of power systems: Theoretical results and computer implementation. In: Proceedings of the 29th IEEE Conference on Decision and Control, pp. 1561–1566. IEEE (1990). https://doi.org/10.1109/CDC.1990.203876
Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regeneration homotopies for solving systems of polynomials. Math. Comput. 80(273), 345–377 (2011). https://doi.org/10.1090/S0025-5718-2010-02399-3
Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regenerative cascade homotopies for solving polynomial systems. Appl. Math. Comput. 218(4), 1240–1246 (2011). https://doi.org/10.1016/j.amc.2011.06.004
Huber, B.: Solving sparse polynomial systems. Ph.D. thesis, Cornell University (1996)
Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64(212), 1541–1555 (1995)
Huber, B., Sturmfels, B.: Bernstein’s theorem in affine space. Discrete Comput. Geom. 17(2), 137–141 (1997). https://doi.org/10.1007/BF02770870
Jensen, A.N.: Computing Gröbner fans and tropical varieties in Gfan. In: Stillman, M., Verschelde, J., Takayama, N. (eds.) Software for Algebraic Geometry. The IMA Volumes in Mathematics and Its Applications, vol. 148, pp. 33–46. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78133-4_3
Kaveh, K., Khovanskii, A.G.: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176(2), 925–978 (2012). https://doi.org/10.4007/annals.2012.176.2.5
Khovanskii, A.G.: Newton polyhedra and the genus of complete intersections. Funct. Anal. Appl. 12(1), 38–46 (1978). https://doi.org/10.1007/BF01077562
Kim, S., Kojima, M.: Numerical stability of path tracing in polyhedral homotopy continuation methods. Computing 73(4), 329–348 (2004). https://doi.org/10.1007/s00607-004-0070-6
Kojima, M.: Efficient evaluation of polynomials and their partial derivatives in homotopy continuation methods. J. Oper. Res. Soc. Jpn. 51(1), 29–54 (2008)
Kundur, P., Balu, N.J., Lauby, M.G.: Power System Stability and Control. McGraw-Hill, New York (1994)
Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, P.H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 39, pp. 420–422. Springer, Berlin (1975). https://doi.org/10.1007/BFb0013365
Kushnirenko, A.G.: Newton polytopes and the Bezout theorem. Funct. Anal. Appl. 10(3), 233–235 (1976). https://doi.org/10.1007/BF01075534
Lee, T.-L., Li, T.-Y.: Mixed volume computation in solving polynomial systems. In: Gurvits, L., et al. (eds.) Randomization, Relaxation, and Complexity in Polynomial Equation Solving. Contemporary Mathematics, vol. 556, pp. 97–112. American Mathematical Society, Providence (2011)
Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83(2), 109–133 (2008)
Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation methods. In: Ciarlet, P.G. (ed.) Handbook of Numerical Analysis, vol. 11, pp. 209–304. North-Holland, Amsterdam (2003)
Li, T.Y., Li, X.: Finding mixed cells in the mixed volume computation. Found. Comput. Math. 1(2), 161–181 (2001). https://doi.org/10.1007/s102080010005
Li, T.-Y., Sauer, T., Yorke, J.A.: The random product homotopy and deficient polynomial systems. Numer. Math. 51(5), 481–500 (1987). https://doi.org/10.1007/BF01400351
Li, T.Y., Sauer, T., Yorke, J.A.: The cheater’s homotopy: an efficient procedure for solving systems of polynomial equations. SIAM J. Numer. Anal. 26(5), 1241–1251 (1989)
Li, T.Y., Wang, X.: The BKK root count in \({ C^n}\). Math. Comp. 65(216), 1477–1484 (1996)
Malajovich, G.: Computing mixed volume and all mixed cells in quermassintegral time. Found. Comput. Math. 17(5), 1293–1334 (2016). https://doi.org/10.1007/s10208-016-9320-1
Marecek, J., McCoy, T., Mevissen, M.: Power flow as an algebraic system. (2014). arXiv:1412.8054 [cs, math]
McKelvey, R.D., McLennan, A.: The maximal number of regular totally mixed Nash equilibria. J. Econom. Theory 72(2), 411–425 (1997). https://doi.org/10.1006/JETH.1996.2214
McLennan, A.: The maximal generic number of pure Nash equilibria. J. Econom. Theory 72(2), 408–410 (1997). https://doi.org/10.1006/jeth.1996.2213
Mehta, D., Daleo, N.S., Dörfler, F., Hauenstein, J.D.: Algebraic geometrization of the Kuramoto model: equilibria and stability analysis. Chaos 25(5), 053103 (2015). https://doi.org/10.1063/1.4919696
Mehta, D., Nguyen, H., Turitsyn, K.: Numerical polynomial homotopy continuation method to locate all the power flow solutions. (2014). arXiv:1408.2732 [nlin]
Michiels, T., Verschelde, J.: Enumerating regular mixed-cell configurations. Discrete Comput. Geom. 21(4), 569–579 (1999). https://doi.org/10.1007/PL00009439
Minkowski, H.: Theorie der konvexen Körper, insbesondere Begrundung ihres Oberflachenbegriffs. Gesammelte Abh. von Hermann Minkowski 2, 131–229 (1911)
Mizutani, T., Takeda, A.: DEMiCs: a software package for computing the mixed volume via dynamic enumeration of all mixed cells. In: Stillman, M., Verschelde, J., Takayama, N. (eds.) Software for Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 48, pp. 59–79. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78133-4_5
Mizutani, T., Takeda, A., Kojima, M.: Dynamic enumeration of all mixed cells. Discrete Comput. Geom. 37(3), 351–367 (2007). https://doi.org/10.1007/s00454-006-1300-9
Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29(2), 123–160 (1989). https://doi.org/10.1016/0096-3003(89)90099-4
Mumford, D.: Algebraic Geometry: Complex Projective Varieties, vol. 1. Springer, Berlin (1995)
Noonburg, V.: A neural network modeled by an adaptive Lotka–Volterra system. SIAM J. Appl. Math. 49(6), 1779–1792 (1989)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005). https://doi.org/10.1016/j.jsc.2005.05.007
Rojas, J.M.: Toric intersection theory for affine root counting. J. Pure Appl. Algebra 136(1), 67–100 (1999). https://doi.org/10.1016/S0022-4049(98)00023-1
Sommese, A.J., Wampler, C.W.: Numerical algebraic geometry. In: Renegar, J., Shub, M., Smale, S. (eds.) The Mathematics of Numerical Analysis. Lectures in Applied Mathematics, vol. 32, pp. 749–763. American Mathematical Society, Providence (1996)
Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)
Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999)
Verschelde, J., Yoffe, G.: Evaluating polynomials in several variables and their derivatives on a GPU computing processor. In: The IEEE 26th International Parallel and Distributed Processing Symposium Workshops and PhD Forum (IPDPSW 2012), pp. 1397–1405. IEEE (2012). https://doi.org/10.1109/IPDPSW.2012.177
Verschelde, J., Gatermann, K., Cools, R.: Mixed-volume computation by dynamic lifting applied to polynomial system solving. Discrete Comput. Geom. 16(1), 69–112 (1996). https://doi.org/10.1007/BF02711134
Verschelde, J., Verlinden, P., Cools, R.: Homotopies exploiting Newton polytopes for solving sparse polynomial systems. SIAM J. Numer. Anal. 31(3), 915–930 (1994). https://doi.org/10.1137/0731049
Zhang, Y.: Mixed volume and total degree. Ph.D. thesis, Michigan State University (2008)
Zhou, L.: Computing tensor Eigenpairs using homotopy methods. Ph.D. thesis, Michigan State University (2015)
Acknowledgements
The Researches partially supported by an AMS-Simons Travel Grant, NSF Grant DMS 1115587, and the Auburn University Grant-In-Aid program.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: Kenneth Clarkson
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
A: Monotonicity of Mixed Volume
The mixed volume \({{\,\mathrm{MV}\,}}(Q_1,\dots ,Q_n)\), as a function that takes n convex polytopes, is monotone in each of its arguments in the sense that if \(Q_1' \subseteq Q_1\) then \({{\,\mathrm{MV}\,}}(Q_1',Q_2,\dots ,Q_n) \le {{\,\mathrm{MV}\,}}(Q_1,Q_2,\dots ,Q_n)\). The same applies for all arguments. Since \(Q_i \subseteq \tilde{Q} := {{\,\mathrm{conv}\,}}(Q_1 \cup \dots \cup Q_n)\) for each \(i=1,\dots ,n\), the inequality
always holds regardless of the relative position of the polytopes. The present contribution shows that the equality can hold even when each \(Q_i\) is strictly contained in \(\tilde{Q}\).
B: Modifications to Polyhedral Homotopies
The apparent limitations of the construction of the polyhedral homotopy (22) are that the target system \(P(\mathbf {x})\) is assumed to be in general position, zeros in \(\mathbb {C}^n {\setminus } (\mathbb {C}^*)^n\) may not be reached, and the numerical condition of the equation \(H(\mathbf {x},t) = \varvec{0}\) may be poor. These limitations are surmounted by modifications proposed in subsequent studies [44, 48, 54, 59, 74]. A commonly used extension of (22) with respect to the same liftings and target system is given by
where \(c_{i,\mathbf {a}}\) and \(\varepsilon _i\) are generic complex numbers and \(B \mathbf {x}= (b_1 x_1,\dots ,b_n x_n)\) with \(b_i \in \mathbb {R}^+\) is chosen to properly improve the numerical stability. It can be shown that as t varies from \(-\infty \) to 0, the solutions of \(H(\mathbf {x},t) = \varvec{0}\) also vary continuously forming smooth solution paths that collectively reach all isolated zeros of the target system \(P(\mathbf {x})\) in \(\mathbb {C}^n\). This extension has been adopted in PHoM [38], Hom4PS-2.0 [54], and Hom4PS-3 [21]. A variation of it can also be found in recent versions of PHCpack [77].
C: Libtropicana
The software package libtropicanaFootnote 6 is developed by the author specifically to carry out the experiments shown in Sect. 7. Given a convex polytope in \(\mathbb {Z}^n\), it computes a regular subdivision and also produces the normalized volume of the polytope as a byproduct. It is based on a pivoting algorithm similar to the core algorithm of lrs [4]. But unlike lrs, which puts a special emphasis on memory efficiency and accuracy, libtropicana focuses on speed (potentially at the expense of higher memory consumption) and moderate sized polytopes. It is written completely in C++ with optional interface for leveraging BLAS and spBLAS (Sparse BLAS) routines. libtropicana is open source software. Users may freely distribute its source under the terms of the LGPL license.
Rights and permissions
About this article
Cite this article
Chen, T. Unmixing the Mixed Volume Computation. Discrete Comput Geom 62, 55–86 (2019). https://doi.org/10.1007/s00454-019-00078-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-019-00078-x
Keywords
- Convex polytope
- Newton polytope
- Mixed volume
- BKK Bounds
- Semi-mixed systems
- Power-flow equations
- Kuramoto model
- Tensor eigenvalues