Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unmixing the Mixed Volume Computation

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Computing mixed volume of convex polytopes is an important problem in computational algebraic geometry. This paper establishes sufficient conditions under which the mixed volume of several convex polytopes exactly equals the normalized volume of the convex hull of their union. Under these conditions the problem of computing mixed volume of several polytopes can be transformed into a volume computation problem for a single polytope in the same dimension. We demonstrate through problems from real world applications that substantial reduction in computational costs can be achieved via this transformation in situations where the convex hull of the union of the polytopes has less complex geometry than the original polytopes. We also discuss the important implications of this result in the polyhedral homotopy method for solving polynomial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. An alternative definition for mixed volume is the coefficient of \(\lambda _1 \cdots \lambda _n\) in that polynomial divided by n!

  2. Here, a point \(\mathbf {x}\in \mathbb {V}^*(P)\) is said to be isolated (a.k.a. geometrically isolated) if there is an open set in \((\mathbb {C}^*)^n\) that contains \(\mathbf {x}\) but does not contain any other points in \(\mathbb {V}^*(P)\).

  3. There are several related concepts of “synchronization” in this context, which are listed in [30]. Here we only study a version of the so called frequency synchronization, a.k.a. frequency critical points. In the general context such points are characterized by all \(\frac{d\theta _i}{dt}\) converging to a common value (not necessarily zero). However, after switching to a rotational frame of reference, it is equivalent to requiring \(\frac{d\theta _i}{dt} = 0\) for \(i=0,\ldots ,n\).

  4. Actually, the stronger Li–Wang extension [59] of the BKK bound was used in this analysis. This extension produces an upper bound of the root count of a polynomial system in \(\mathbb {C}^n\) (rather than \((\mathbb {C}^*)^n\)). Alternatively, the stable mixed cells method [44] could potentially produce even tighter root count bound in \(\mathbb {C}^n\), though it is more difficult to compute.

  5. Since most of the software packages to be used rely on randomized algorithms, the average of CPU time from 5 different runs are used in Table 1. All runs are performed on the same workstation equipped with an \(\textsf {Intel}^{\textregistered }\textsf { Core}^{\textsf {TM}} \textsf {i5-3570K}\) processor running at 3.4GHz. For a meaningful comparison, Hom4PS-3, which is designed to compute mixed volume in parallel, is configured to use only one thread (serial mode) in this case.

  6. https://github.com/chentianran/libtropicana

References

  1. Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137–185 (2005). https://doi.org/10.1103/RevModPhys.77.137

    Article  Google Scholar 

  2. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer Series in Computational Mathematics, vol. 13. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  3. Attardi, G., Traverso, C.: The PoSSo library for polynomial system solving. In: Proc. of AIHENP95 (1995)

  4. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992). https://doi.org/10.1007/BF02293050

    Article  MathSciNet  MATH  Google Scholar 

  5. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Baillieul, J.: The critical point analysis of electric power systems. In: The 23rd IEEE Conference on Decision and Control, pp. 154–159. IEEE (1984). https://doi.org/10.1109/CDC.1984.272291

  7. Baillieul, J., Byrnes, C.I.: Geometric critical point analysis of lossless power system models. IEEE Trans. Circuits Syst. 29(11), 724–737 (1982). https://doi.org/10.1109/TCS.1982.1085093

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernshtein, D.N.: The number of roots of a system of equations. Funct. Anal. Appl. 9(3), 183–185 (1975)

    Article  MathSciNet  Google Scholar 

  9. Bernshtein, D.N., Kushnirenko, A.G., Khovanskii, A.G.: Newton polyhedra. Uspekhi Mat. Nauk 31(3(189)), 201–202 (1976)

    MathSciNet  MATH  Google Scholar 

  10. Bihan, F., Soprunov, I.: Criteria for strict monotonicity of the mixed volume of convex polytopes. arXiv:1702.07676 [math] (2017)

  11. Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: a practical study. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes-Combinatorics and Computation. DMV Seminar, vol. 29, pp. 131–154. Birkhäuser, Basel (2000). https://doi.org/10.1007/978-3-0348-8438-9_6

    Chapter  MATH  Google Scholar 

  12. Canny, J., Rojas, J.M.: An optimal condition for determining the exact number of roots of a polynomial system. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation (ISSAC’91), pp. 96–102. ACM, New York (1991). https://doi.org/10.1145/120694.120707

  13. Cartwright, D., Sturmfels, B.: The number of eigenvalues of a tensor. Linear Algebra Appl. 438(2), 942–952 (2013). https://doi.org/10.1016/j.laa.2011.05.040

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, K.C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350(1), 416–422 (2009). https://doi.org/10.1016/j.jmaa.2008.09.067

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods. arXiv:1501.04201 [math] (2015)

  16. Chen, T.: libtropicana: v0.1.1 (2016). https://doi.org/10.5281/zenodo.57133

  17. Chen, T.: On the equality of BKK bound and birationally invariant intersection index (2018). arXiv:1812.05408

  18. Chen, T., Davis, R.: A product formula for the normalized volume of free sums of lattice polytopes (2017). arXiv:1711.11130

  19. Chen, T., Davis, R.: A toric deformation method for solving Kuramoto equations (2018). arXiv:1810.05690

  20. Chen, T., Davis, R., Mehta, D.: Counting equilibria of the Kuramoto model using birationally invariant intersection index. SIAM J. Appl. Algebra Geom. 2(4), 489–507 (2018). https://doi.org/10.1137/17M1145665

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, T., Lee, T.L., Li, T.Y.: Hom4PS-3: a parallel numerical solver for systems of polynomial equations based on polyhedral homotopy continuation methods. In: Hong, H., Yap, C. (eds.) Mathematical Software (ICMS 2014). Lecture Notes in Computer Science, vol. 8592, pp. 183–190. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-44199-2_30

    Chapter  Google Scholar 

  22. Chen, T., Lee, T.-L., Li, T.-Y.: Mixed volume computation in parallel. Taiwan. J. Math. 18(1), 93–114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, T., Lee, T.-L., Li, T.-Y.: Mixed cell computation in Hom4PS-3. J. Symb. Comput. 79(Part 3), 516–534 (2017). https://doi.org/10.1016/j.jsc.2016.07.017

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, T., Li, T.-Y.: Solutions to systems of binomial equations. Ann. Math. Sil. 28, 7–34 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Chen, T., Li, T.-Y.: Homotopy continuation method for solving systems of nonlinear and polynomial equations. Commun. Inf. Syst. 15(2), 119–307 (2015). https://doi.org/10.4310/CIS.2015.v15.n2.a1

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, T., Mehta, D.: On the network topology dependent solution count of the algebraic load flow equations. IEEE Trans. Power Syst. 33(2), 1451–1460 (2018)

    Article  Google Scholar 

  27. Chen, T., Mehta, D., Niemerg, M.: A network topology dependent upper bound on the number of equilibria of the Kuramoto model. arXiv:1603.05905 [nlin] (2016)

  28. Dekker, A.H., Taylor, R.: Synchronization properties of trees in the Kuramoto model. SIAM J. Appl. Dyn. Syst. 12(2), 596–617 (2013). https://doi.org/10.1137/120899728

    Article  MathSciNet  MATH  Google Scholar 

  29. Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36(3), 1073–1099 (2015). https://doi.org/10.1137/140975656

    Article  MathSciNet  MATH  Google Scholar 

  30. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: A survey. Autom. J. IFAC 50(6), 1539–1564 (2014). https://doi.org/10.1016/j.automatica.2014.04.012

    Article  MathSciNet  MATH  Google Scholar 

  31. Dyer, M., Gritzmann, P., Hufnagel, A.: On the complexity of computing mixed volumes. SIAM J. Comput. 27(2), 356–400 (1998). https://doi.org/10.1137/S0097539794278384

    Article  MathSciNet  MATH  Google Scholar 

  32. Emiris, I.Z., Canny, J.F.: Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symb. Comput. 20(2), 117–149 (1995). https://doi.org/10.1006/jsco.1995.1041

    Article  MathSciNet  MATH  Google Scholar 

  33. Emiris, I.Z., Vidunas, R.: Root counts of semi-mixed systems, and an application to counting Nash equilibria. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC 2014), pp. 154–161. ACM, New York (2014). https://doi.org/10.1145/2608628.2608679

  34. Gao, T., Li, T.Y.: Mixed volume computation via linear programming. Taiwan. J. Math. 4(4), 599–619 (2000). 10.11650/tjm.4.2000.1295

    Article  MathSciNet  MATH  Google Scholar 

  35. Gao, T., Li, T.Y.: Mixed volume computation for semi-mixed systems. Discrete Comput. Geom. 29(2), 257–277 (2003). https://doi.org/10.1007/s00454-002-2837-x

    Article  MathSciNet  MATH  Google Scholar 

  36. Gao, T., Li, T.Y., Wu, M.: Algorithm 846: MixedVol: a software package for mixed-volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005). https://doi.org/10.1145/1114268.1114274

    Article  MathSciNet  MATH  Google Scholar 

  37. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994). https://doi.org/10.1007/978-0-8176-4771-1_1

    Book  MATH  Google Scholar 

  38. Gunji, T., Kim, S., Kojima, M., Takeda, A., Fujisawa, K., Mizutani, T.: PHoM—a polyhedral homotopy continuation method for polynomial systems. Computing 73(1), 57–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Guo, S.X., Salam, F.M.A.: Determining the solutions of the load flow of power systems: Theoretical results and computer implementation. In: Proceedings of the 29th IEEE Conference on Decision and Control, pp. 1561–1566. IEEE (1990). https://doi.org/10.1109/CDC.1990.203876

  40. Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regeneration homotopies for solving systems of polynomials. Math. Comput. 80(273), 345–377 (2011). https://doi.org/10.1090/S0025-5718-2010-02399-3

    Article  MathSciNet  MATH  Google Scholar 

  41. Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regenerative cascade homotopies for solving polynomial systems. Appl. Math. Comput. 218(4), 1240–1246 (2011). https://doi.org/10.1016/j.amc.2011.06.004

    Article  MathSciNet  MATH  Google Scholar 

  42. Huber, B.: Solving sparse polynomial systems. Ph.D. thesis, Cornell University (1996)

  43. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64(212), 1541–1555 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Huber, B., Sturmfels, B.: Bernstein’s theorem in affine space. Discrete Comput. Geom. 17(2), 137–141 (1997). https://doi.org/10.1007/BF02770870

    Article  MathSciNet  MATH  Google Scholar 

  45. Jensen, A.N.: Computing Gröbner fans and tropical varieties in Gfan. In: Stillman, M., Verschelde, J., Takayama, N. (eds.) Software for Algebraic Geometry. The IMA Volumes in Mathematics and Its Applications, vol. 148, pp. 33–46. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78133-4_3

    Chapter  Google Scholar 

  46. Kaveh, K., Khovanskii, A.G.: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176(2), 925–978 (2012). https://doi.org/10.4007/annals.2012.176.2.5

    Article  MathSciNet  MATH  Google Scholar 

  47. Khovanskii, A.G.: Newton polyhedra and the genus of complete intersections. Funct. Anal. Appl. 12(1), 38–46 (1978). https://doi.org/10.1007/BF01077562

    Article  MathSciNet  Google Scholar 

  48. Kim, S., Kojima, M.: Numerical stability of path tracing in polyhedral homotopy continuation methods. Computing 73(4), 329–348 (2004). https://doi.org/10.1007/s00607-004-0070-6

    Article  MathSciNet  MATH  Google Scholar 

  49. Kojima, M.: Efficient evaluation of polynomials and their partial derivatives in homotopy continuation methods. J. Oper. Res. Soc. Jpn. 51(1), 29–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kundur, P., Balu, N.J., Lauby, M.G.: Power System Stability and Control. McGraw-Hill, New York (1994)

    Google Scholar 

  51. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, P.H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 39, pp. 420–422. Springer, Berlin (1975). https://doi.org/10.1007/BFb0013365

    Chapter  Google Scholar 

  52. Kushnirenko, A.G.: Newton polytopes and the Bezout theorem. Funct. Anal. Appl. 10(3), 233–235 (1976). https://doi.org/10.1007/BF01075534

    Article  MATH  Google Scholar 

  53. Lee, T.-L., Li, T.-Y.: Mixed volume computation in solving polynomial systems. In: Gurvits, L., et al. (eds.) Randomization, Relaxation, and Complexity in Polynomial Equation Solving. Contemporary Mathematics, vol. 556, pp. 97–112. American Mathematical Society, Providence (2011)

    Chapter  Google Scholar 

  54. Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83(2), 109–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation methods. In: Ciarlet, P.G. (ed.) Handbook of Numerical Analysis, vol. 11, pp. 209–304. North-Holland, Amsterdam (2003)

    Google Scholar 

  56. Li, T.Y., Li, X.: Finding mixed cells in the mixed volume computation. Found. Comput. Math. 1(2), 161–181 (2001). https://doi.org/10.1007/s102080010005

    Article  MathSciNet  MATH  Google Scholar 

  57. Li, T.-Y., Sauer, T., Yorke, J.A.: The random product homotopy and deficient polynomial systems. Numer. Math. 51(5), 481–500 (1987). https://doi.org/10.1007/BF01400351

    Article  MathSciNet  MATH  Google Scholar 

  58. Li, T.Y., Sauer, T., Yorke, J.A.: The cheater’s homotopy: an efficient procedure for solving systems of polynomial equations. SIAM J. Numer. Anal. 26(5), 1241–1251 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  59. Li, T.Y., Wang, X.: The BKK root count in \({ C^n}\). Math. Comp. 65(216), 1477–1484 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  60. Malajovich, G.: Computing mixed volume and all mixed cells in quermassintegral time. Found. Comput. Math. 17(5), 1293–1334 (2016). https://doi.org/10.1007/s10208-016-9320-1

    Article  MathSciNet  MATH  Google Scholar 

  61. Marecek, J., McCoy, T., Mevissen, M.: Power flow as an algebraic system. (2014). arXiv:1412.8054 [cs, math]

  62. McKelvey, R.D., McLennan, A.: The maximal number of regular totally mixed Nash equilibria. J. Econom. Theory 72(2), 411–425 (1997). https://doi.org/10.1006/JETH.1996.2214

    Article  MathSciNet  MATH  Google Scholar 

  63. McLennan, A.: The maximal generic number of pure Nash equilibria. J. Econom. Theory 72(2), 408–410 (1997). https://doi.org/10.1006/jeth.1996.2213

    Article  MathSciNet  MATH  Google Scholar 

  64. Mehta, D., Daleo, N.S., Dörfler, F., Hauenstein, J.D.: Algebraic geometrization of the Kuramoto model: equilibria and stability analysis. Chaos 25(5), 053103 (2015). https://doi.org/10.1063/1.4919696

    Article  MathSciNet  MATH  Google Scholar 

  65. Mehta, D., Nguyen, H., Turitsyn, K.: Numerical polynomial homotopy continuation method to locate all the power flow solutions. (2014). arXiv:1408.2732 [nlin]

  66. Michiels, T., Verschelde, J.: Enumerating regular mixed-cell configurations. Discrete Comput. Geom. 21(4), 569–579 (1999). https://doi.org/10.1007/PL00009439

    Article  MathSciNet  MATH  Google Scholar 

  67. Minkowski, H.: Theorie der konvexen Körper, insbesondere Begrundung ihres Oberflachenbegriffs. Gesammelte Abh. von Hermann Minkowski 2, 131–229 (1911)

    Google Scholar 

  68. Mizutani, T., Takeda, A.: DEMiCs: a software package for computing the mixed volume via dynamic enumeration of all mixed cells. In: Stillman, M., Verschelde, J., Takayama, N. (eds.) Software for Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 48, pp. 59–79. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78133-4_5

    Chapter  MATH  Google Scholar 

  69. Mizutani, T., Takeda, A., Kojima, M.: Dynamic enumeration of all mixed cells. Discrete Comput. Geom. 37(3), 351–367 (2007). https://doi.org/10.1007/s00454-006-1300-9

    Article  MathSciNet  MATH  Google Scholar 

  70. Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29(2), 123–160 (1989). https://doi.org/10.1016/0096-3003(89)90099-4

    Article  MathSciNet  MATH  Google Scholar 

  71. Mumford, D.: Algebraic Geometry: Complex Projective Varieties, vol. 1. Springer, Berlin (1995)

    MATH  Google Scholar 

  72. Noonburg, V.: A neural network modeled by an adaptive Lotka–Volterra system. SIAM J. Appl. Math. 49(6), 1779–1792 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  73. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005). https://doi.org/10.1016/j.jsc.2005.05.007

    Article  MathSciNet  MATH  Google Scholar 

  74. Rojas, J.M.: Toric intersection theory for affine root counting. J. Pure Appl. Algebra 136(1), 67–100 (1999). https://doi.org/10.1016/S0022-4049(98)00023-1

    Article  MathSciNet  MATH  Google Scholar 

  75. Sommese, A.J., Wampler, C.W.: Numerical algebraic geometry. In: Renegar, J., Shub, M., Smale, S. (eds.) The Mathematics of Numerical Analysis. Lectures in Applied Mathematics, vol. 32, pp. 749–763. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  76. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  77. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999)

    Article  MATH  Google Scholar 

  78. Verschelde, J., Yoffe, G.: Evaluating polynomials in several variables and their derivatives on a GPU computing processor. In: The IEEE 26th International Parallel and Distributed Processing Symposium Workshops and PhD Forum (IPDPSW 2012), pp. 1397–1405. IEEE (2012). https://doi.org/10.1109/IPDPSW.2012.177

  79. Verschelde, J., Gatermann, K., Cools, R.: Mixed-volume computation by dynamic lifting applied to polynomial system solving. Discrete Comput. Geom. 16(1), 69–112 (1996). https://doi.org/10.1007/BF02711134

    Article  MathSciNet  MATH  Google Scholar 

  80. Verschelde, J., Verlinden, P., Cools, R.: Homotopies exploiting Newton polytopes for solving sparse polynomial systems. SIAM J. Numer. Anal. 31(3), 915–930 (1994). https://doi.org/10.1137/0731049

    Article  MathSciNet  MATH  Google Scholar 

  81. Zhang, Y.: Mixed volume and total degree. Ph.D. thesis, Michigan State University (2008)

  82. Zhou, L.: Computing tensor Eigenpairs using homotopy methods. Ph.D. thesis, Michigan State University (2015)

Download references

Acknowledgements

The Researches partially supported by an AMS-Simons Travel Grant, NSF Grant DMS 1115587, and the Auburn University Grant-In-Aid program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianran Chen.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A: Monotonicity of Mixed Volume

The mixed volume \({{\,\mathrm{MV}\,}}(Q_1,\dots ,Q_n)\), as a function that takes n convex polytopes, is monotone in each of its arguments in the sense that if \(Q_1' \subseteq Q_1\) then \({{\,\mathrm{MV}\,}}(Q_1',Q_2,\dots ,Q_n) \le {{\,\mathrm{MV}\,}}(Q_1,Q_2,\dots ,Q_n)\). The same applies for all arguments. Since \(Q_i \subseteq \tilde{Q} := {{\,\mathrm{conv}\,}}(Q_1 \cup \dots \cup Q_n)\) for each \(i=1,\dots ,n\), the inequality

$$\begin{aligned} {{\,\mathrm{MV}\,}}(Q_1,\dots ,Q_n) \le {{\,\mathrm{MV}\,}}(\tilde{Q},\dots ,\tilde{Q}) = n! {{\,\mathrm{vol}\,}}(\tilde{Q}) \end{aligned}$$

always holds regardless of the relative position of the polytopes. The present contribution shows that the equality can hold even when each \(Q_i\) is strictly contained in \(\tilde{Q}\).

B: Modifications to Polyhedral Homotopies

The apparent limitations of the construction of the polyhedral homotopy (22) are that the target system \(P(\mathbf {x})\) is assumed to be in general position, zeros in \(\mathbb {C}^n {\setminus } (\mathbb {C}^*)^n\) may not be reached, and the numerical condition of the equation \(H(\mathbf {x},t) = \varvec{0}\) may be poor. These limitations are surmounted by modifications proposed in subsequent studies [44, 48, 54, 59, 74]. A commonly used extension of (22) with respect to the same liftings and target system is given by

where \(c_{i,\mathbf {a}}\) and \(\varepsilon _i\) are generic complex numbers and \(B \mathbf {x}= (b_1 x_1,\dots ,b_n x_n)\) with \(b_i \in \mathbb {R}^+\) is chosen to properly improve the numerical stability. It can be shown that as t varies from \(-\infty \) to 0, the solutions of \(H(\mathbf {x},t) = \varvec{0}\) also vary continuously forming smooth solution paths that collectively reach all isolated zeros of the target system \(P(\mathbf {x})\) in \(\mathbb {C}^n\). This extension has been adopted in PHoM [38], Hom4PS-2.0 [54], and Hom4PS-3 [21]. A variation of it can also be found in recent versions of PHCpack [77].

C: Libtropicana

The software package libtropicanaFootnote 6 is developed by the author specifically to carry out the experiments shown in Sect. 7. Given a convex polytope in \(\mathbb {Z}^n\), it computes a regular subdivision and also produces the normalized volume of the polytope as a byproduct. It is based on a pivoting algorithm similar to the core algorithm of lrs [4]. But unlike lrs, which puts a special emphasis on memory efficiency and accuracy, libtropicana focuses on speed (potentially at the expense of higher memory consumption) and moderate sized polytopes. It is written completely in C++ with optional interface for leveraging BLAS and spBLAS (Sparse BLAS) routines. libtropicana is open source software. Users may freely distribute its source under the terms of the LGPL license.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T. Unmixing the Mixed Volume Computation. Discrete Comput Geom 62, 55–86 (2019). https://doi.org/10.1007/s00454-019-00078-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00078-x

Keywords

Mathematics Subject Classification