Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monotonic Distributive Semilattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the {→, ∧, ⊤}-fragment of intuitionistic logic is the variety of implicative meet-semilattices (Chellas 1980; Hansen 2003). In this paper we introduce and study the class of distributive meet-semilattices endowed with a monotonic modal operator m. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality for them. Also, we show how our new duality extends to some particular subclasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calomino, I.M., Celani, S.A.: Some remarks on distributive semilattices. Comment. Math. Univ. Carolin. 54(3), 407428 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Celani, S.A.: Representation of Hilbert algebras and Implicative Semilattices. Cent. Eur. J. Math. 1(4), 561–572 (2003)

    Article  MathSciNet  Google Scholar 

  3. Celani, S.A.: Topological duality for Boolean algebras with a normal n-ary monotonic operator. Order 26(1), 4967 (2009)

    Article  MathSciNet  Google Scholar 

  4. Celani, S.A.: Topological representation of distributive semilattices. Sci. Math. Japonicae Online 8, 4151 (2003)

    MATH  Google Scholar 

  5. Chagrov, A., Zakharyaschev, M.: Modal logic. Volumen 35 of Oxford logic guides, New York (1997)

  6. Chajda, I., Halas, R., Kühr, J.: Semilattice Structures. Vol. 30, Research and Exposition in Mathematics. Heldermann Verlagr (2007)

  7. Chellas, B.F.: Modal logic: an introduction. Cambridge University Press, Cambridge (1980)

    Book  Google Scholar 

  8. Dunn, J.M., Gehrke, M., Palmigiano, A.: Canonical extensions and relational completeness of some substructural logics. J. Symb. Log. 70(3), 713–740 (2005)

    Article  MathSciNet  Google Scholar 

  9. Düntsch, I., Orlowska, E., Rewitzky, I.: Structures with multirelations, their discrete dualities and applications. Fund. Inform. 100, 77–98 (2010)

    Article  MathSciNet  Google Scholar 

  10. Gehrke, M.: Canonical Extensions, Esakia Spaces, and Universal Models. In: Bezhanishvili, G. (ed.) Outstanding Contributions to Logic, vol. 4, p 941. Springer, Netherlands (2014)

    Google Scholar 

  11. Gehrke, M., Jónsson, B.: Monotone bounded distributive lattice expansions. Math Jpn. 197213, 52 (2000)

    MATH  Google Scholar 

  12. Grȧtzer, G.: General lattice theory. Academic Press, Birkhȧuser (1978)

    Book  Google Scholar 

  13. Hansen, H.H.: Monotonic Modal Logics. Master’s Thesis, University of Amsterdam, Faculty of Science, Institute for Logic, Language and Computation (2003)

  14. Hansen, H.H., Kupke, C., Pacuit, E.: Neighbourhood structures: bisimilarity and basic model theory. Log. Methods Comput. Sci. 5(2), 138 (2009)

    Article  MathSciNet  Google Scholar 

  15. Jonsson, B., Tarski, A.: Boolean algebras with operators. Part I. Amer. J. Math. 73(4), 891–939 (1951)

    Article  MathSciNet  Google Scholar 

  16. Kojima, K.: Relational and neighborhood semantics for intuitionistic modal logic. Rep. Math. Log. 47, 87113 (2012)

    MathSciNet  Google Scholar 

  17. Rewitzky, I.: Binary Multirelations. In: De Swart, H., Orowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Application of Relational Structures as Knowledge Instruments, vol. 2929, p 259274. Springer, Berlin (2003)

    Google Scholar 

  18. Sotirov, V.H.: Modal theories with intuitionistic logic. In: Proceedings of the Conference on Mathematical Logic, Sofia, 1980, p 139171. Bulgarian Academy of Sciences, Sofia (1984)

Download references

Acknowledgments

This paper has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 689176, and the support of the grant PIP 11220150100412CO of CONICET (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma. Paula Menchón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celani, S.A., Menchón, M.P. Monotonic Distributive Semilattices. Order 36, 463–486 (2019). https://doi.org/10.1007/s11083-018-9477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-018-9477-0

Keywords