Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum private comparison protocol based on entanglement swapping of \(d\)-level Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a quantum private comparison protocol based on entanglement swapping, where two distrustful parties can compare the values of their secrets with the help of a semi-trusted third party. The protocol can determine not only whether two secrets are equal, but also the size relationship between them. The two parties can deduce the comparison result based on the keys shared between them and the announcement of the third party. Others including the third party will learn nothing about the values of the secrets, as well as the comparison result. The security of our protocol is analyzed. Furthermore, all the particles can be reused in the same protocol model theoretically. So our protocol is efficient and feasible to expand in network service, which in turn gives a solution to the left problem in Lin et al. (Quantum Inf Process, doi:10.1007/s11128-012-0395-6, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: in IEEE International Conference on Computers, Systems and Signal Processing. IEEE, New York: Bangalore, pp. 175–179 (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A. 57, 822 (1998)

    Article  ADS  Google Scholar 

  4. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  5. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires problem. Discr. Appl. Math. (Special Issue on Coding and Cryptology) 111, 23–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cerf, N.J., Bourennane, M., et al.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  7. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68, 042317 (2003)

    Article  ADS  Google Scholar 

  9. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the BradlerCDusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Guo, F.Z., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis and improvement of two GHZ-state-based QSDC protocols. Chin. Phys. Lett. 27(9), 090307 (2010)

    Article  ADS  Google Scholar 

  12. Guo, F.Z., Gao, F., Wen, Q.Y., Zhu, F.C.: A two-step channel-encrypting quantum key distribution protocol. Int. J. Quantum Inf. 8(6), 1013–1022 (2010)

    Article  MATH  Google Scholar 

  13. Hillery, M., Buzěk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  14. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  15. Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51, 1187–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karimipour, V., Bahraminasab, A.: Quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A. 65, 052331 (2002)

    Article  ADS  Google Scholar 

  17. Lin, S., Sun, Y.,. Liu, X.F, Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum. Inf. Process., doi:10.1007/s11128-012-0395-6 (2012)

  18. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A. 78, 064304 (2008)

    Article  ADS  Google Scholar 

  19. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum. Inf. Process., doi:10.1007/s11128-012-0439-y, (2012)

  20. Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys., doi:10.1007/s10773-012-1246-z

  21. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  22. Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47, 1389–1390 (2011)

    ADS  Google Scholar 

  23. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57, 583–588 (2012)

    Article  ADS  MATH  Google Scholar 

  24. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51, 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using \(\chi \)-type state. Int. J. Theor. Phys. 51, 1953–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  27. Ma, J.J., Guo, F.Z., Yang, Q., et al.: Semi-loss-tolerant strong coin flipping protocol using EPR pairs. Quantum Inf. Comput. 12, 0490–0501 (2012)

    MathSciNet  Google Scholar 

  28. Pan, J.W., Bouwmeester, D., et al.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Steane, A.: Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  30. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum. Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on “quantum private comparison protocols with a semi-honest third party”. Quantum. Inf. Process., doi:10.1007/s11128-012-0433-4 (2012)

  32. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A-Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  33. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  Google Scholar 

  34. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82). Washington, DC, USA, pp. 160 (1982)

  35. Zhang, W.W., Gao, F., Liu, B., et al.: A quantum watermark protocol. Int. J. Theor. Phys. doi:10.1007/s10773-012-1354-9 (2012)

  36. Zhang, W.W., Gao, F., Liu, B. et al.: A watermark strategy for quantum images based on quantum fourier transform. Quantum. Inf. Process. doi:10.1007/s11128-012-0423-6 (2012)

  37. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 20090005110010), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2011YB01, 2012RC0710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen Zhuo Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, F.Z., Gao, F., Qin, S.J. et al. Quantum private comparison protocol based on entanglement swapping of \(d\)-level Bell states. Quantum Inf Process 12, 2793–2802 (2013). https://doi.org/10.1007/s11128-013-0536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0536-6

Keywords