Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

New quantum private comparison protocol using EPR pairs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on EPR pairs, this paper proposes a different quantum private comparison (QPC) protocol enabling two parties to compare the equality of their information without revealing the information content. Due to the use of quantum entanglement of Bell state as well as one-way quantum transmission, the new protocol provides easier implementation as well as better qubit efficiency (near 50%) than the other QPCs. It is secure against Trojan horse attack and other well-known attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, Bangalore, India, 175–179 (1984)

  2. Lo H.K., Chau H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  3. Long G.L., Liu X.S.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  4. Gao G.: Quantum key distribution by comparing Bell states. Opt. Commun. 281(4), 876–879 (2008)

    Article  ADS  Google Scholar 

  5. Yuan H., Song J., Han L.F., Hou K., Shi S.H.: Improving the total efficiency of quantum key distribution by comparing Bell states. Opt. Commun. 281(18), 4803–4806 (2008)

    Article  ADS  Google Scholar 

  6. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Furusawa A., Sørensen J.L., Braunstein S.L., Fuchs C.A., Kimble H.J., Polzik E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  8. Zhang Z.J., Man Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1–4), 55–59 (2005)

    Article  ADS  MATH  Google Scholar 

  9. Zhang W., Liu Y.M., Liu J., Zhang Z.J.: Teleportation of arbitrary unknown two atom state with cluster state via thermal cavity. Chin. Phys. B 17(9), 3203–3208 (2008)

    Article  ADS  Google Scholar 

  10. Zhang Z.Y., Liu Y.M., Zuo X.Q., Zhang W., Zhang Z.J.: Transformation operator and criterion for perfectly teleporting arbitrary three-qubit state with six-qubit channel and Bell-state measurement. Chin. Phys. Lett. 26(12), 120303 (2009)

    Article  ADS  Google Scholar 

  11. Tsai C.W., Hwang T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49(8), 1969–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  13. Xiao L., Long G.L., Deng F.G., Pan J.W.: Efficient multiparty quantum secret sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  14. Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. Deng F.G., Long G.L., Zhou H.Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)

    Article  ADS  MATH  Google Scholar 

  16. Deng F.G., Zhou H.Y., Long G.L.: Circular quantum secret sharing. J. Phys. A: Math. Gen. 39(45), 14089–14099 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Han L.F., Liu Y.M., Liu J., Zhang Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281(9), 2690–2694 (2008)

    Article  ADS  Google Scholar 

  18. Deng F.G., Li X.H., Zhou H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372(12), 1957–1962 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Sun Y., Wen Q.Y., Gao F., Chen X.B., Zhu F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)

    Article  ADS  Google Scholar 

  20. Shi R.H., Huang L.S., Yang W., Zhong H.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(11), 2476–2480 (2010)

    Article  ADS  Google Scholar 

  21. Bostroem K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  22. Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  23. Man Z.X., Zhang Z.J., Li Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22(1), 18–21 (2005)

    Article  ADS  Google Scholar 

  24. Zhan Y.B., Zhang L.L., Zhang Q.Y.: Quantum secure direct communication by entangled qutrits and entanglement swapping. Opt. Commun. 282(23), 4633–4636 (2009)

    Article  ADS  Google Scholar 

  25. Yang C.W., Tsai C.W., Hwang T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Ser. G: Phys. Mech. Astron. 54(3), 496–501 (2011)

    Article  ADS  Google Scholar 

  26. Yang Y.G., Wen Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  27. Chen X.B., Xu G., Niu X.X., Wen Q.Y., Yang Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  28. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), Washington, DC, USA, p. 160 (1982)

  29. Lo H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  30. Boudot F., Schoenmakers B., Traor’e J.: A fair and efficient solution to the socialist millionaires’ problem. Discr. Appl. Math. (Special issue on coding and cryptology) 111(1–2), 23–36 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Hillery M., Ziman M., Bužek V., Bieliková M.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1–4), 5–81 (2006)

    Google Scholar 

  32. Vaccaro J.A, Spring J., Chefles A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  33. Hogg T., Harsha P., Chen K.Y.: Quantum auctions. Int. J. Quantum Inf. 5, 751–780 (2007)

    Article  MATH  Google Scholar 

  34. Yang Y.G., Naseri M., Wen Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)

    Article  ADS  Google Scholar 

  35. Zhao Z., Naseri M., Zheng Y.: Secure quantum sealed-bid auction with post confirmation. Opt. Commun. 283(16), 3194–3197 (2010)

    Article  ADS  Google Scholar 

  36. Deng F.G., Li X.H., Zhou H.Y., Zhang Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  37. Cai Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  38. Li X.H., Deng F.G., Zhou H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  39. Alain A., Jean D., Gérard R.: Experimental test of Bell’s inequalities using time varying analyzers. Phys. Rev. Lett. 49(25), 1804–1807 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  40. Ou Z.Y., Pereira S.F., Kimble H.J., Peng K.C.: Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68(25), 3663–3666 (1992)

    Article  ADS  Google Scholar 

  41. Hagley E., Maître X., Nogues G., Wunderlich C., Brune M., Raimond J.M., Haroche S.: Generation of Einstein–Podolsky–Rosen pairs of atoms. Phys. Rev. Lett. 79(1), 1–5 (1997)

    Article  ADS  Google Scholar 

  42. Hald J., Sørensen J.L., Schori C., Polzik E.S.: Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83(7), 1319–1322 (1999)

    Article  ADS  Google Scholar 

  43. Howell J.C., Bennink R.S., Bentley S.J., Boyd R.W.: Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92(21), 210403 (2004)

    Article  ADS  Google Scholar 

  44. Schuck C., Huber G., Kurtsiefer C., Weinfurter H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96(19), 190501 (2006)

    Article  ADS  Google Scholar 

  45. Saunders D.J., Jones S.J., Wiseman H.M., Pryde G.J.: Experimental EPR steering using Bell-local states. Nat. Phys. 6, 845–849 (2010)

    Article  Google Scholar 

  46. Hwang T., Lee K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)

    Article  Google Scholar 

  47. Chen J.H., Lee K.C., Hwang T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Int. J. Mod. Phy. C 20(10), 1531–1535 (2009)

    Article  ADS  MATH  Google Scholar 

  48. Shih H.C., Lee K.C., Hwang T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15(6), 1602–1606 (2009)

    Article  Google Scholar 

  49. Chong S.K., Hwang T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  50. Hsieh C.R., Tsai C.W., Hwang T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019–1022 (2010)

    Article  MATH  Google Scholar 

  51. Chong S.K., Hwang T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)

    Article  ADS  Google Scholar 

  52. Lin J., Hwang T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  53. Nielsen M.A.: Quantum computation by measurement and quantum memory. Phys. Lett. A 308(2–3), 96–100 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Jeffrey E., Brenner M., Kwiat P.: Delayed-choice quantum cryptography. Proc. SPIE 5161, 269–279 (2004)

    Article  ADS  Google Scholar 

  55. Jeffrey, E., Altepeter, J., Kwiat, P.: Relativistic quantum cryptography. Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FWB1

  56. Jeffrey, E., Altepeter, J., Kwiat, P.: Relativistic quantum cryptography with optical storage. In: International Conference on Quantum Information, OSA Technical Digest (CD) (Optical Society of America, 2007), paper IFE1

  57. Li X.H., Deng F.G., Zhou H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  58. Li X.H., Zhao B.K., Sheng Y.B., Deng F.G., Zhou H.Y.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quant. Inform. 7(8), 1479–1489 (2009)

    Article  MATH  Google Scholar 

  59. Zanardi P., Rasetti M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306–3309 (1997)

    Article  ADS  Google Scholar 

  60. Kempe J., Bacon D., Lidar D.A., Whaley K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63(4), 042307 (2001)

    Article  ADS  Google Scholar 

  61. Knill E., Laflamme R., Viola L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84(11), 2525–2528 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–190 (2002)

    Article  ADS  Google Scholar 

  63. Buttler W.T., Lamoreaux S.K., Torgerson J.R., Nickel G.H., Donahue C.H., Peterson C.G.: Fast, efficient error reconciliation for quantum cryptography. Phys. Rev. A 67(5), 052303 (2003)

    Article  ADS  Google Scholar 

  64. Wang J., Zhang Q., Tang C.J.: Multiparty quantum secret sharing of secure direct communication using teleportation. Commun. Theor. Phys. 47(3), 454–458 (2007)

    Article  MATH  Google Scholar 

  65. Dong L., Xiu X.M., Gao Y.J., Ren Y.P., Liu H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284(3), 905–908 (2011)

    Article  ADS  Google Scholar 

  66. Jennewein T., Simon C., Weihs G., Weinfurter H., Zeilinger A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729–4732 (2000)

    Article  ADS  Google Scholar 

  67. Hughes R.J., Nordholt J.E., Derkacs D., Peterson C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New. J. Phys. 4, 43.1–43.14 (2002)

    Article  Google Scholar 

  68. Gobby C., Yuan Z.L., Shields A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, HY., Lin, J. & Hwang, T. New quantum private comparison protocol using EPR pairs. Quantum Inf Process 11, 373–384 (2012). https://doi.org/10.1007/s11128-011-0251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0251-0

Keywords