Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Fault tolerant two-step quantum secure direct communication protocol against collective noises

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises, respectively. The two QSDC protocols are constructed from four-qubit DF states which consist of two logical qubits. The receiver simply performs two Bell state measurements (rather than four-qubit joint measurements) to obtain the secret message. The protocols have qubit efficiency twice that of the other corresponding fault tolerant QSDC protocols. Furthermore, the proposed protocols are free from Trojan horse attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys Pol A, 2002, 101: 357–368

    ADS  Google Scholar 

  2. Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  ADS  Google Scholar 

  3. Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  4. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  5. Xue P, Guo G C. Secure direct communication using the ‘polarization’ entangled atomic ensembles. J Phys B-Atom Mol Opt Phys, 2004, 37: 711–722

    Article  ADS  Google Scholar 

  6. Gao T, Yan F L, Wang Z X. Quantum secure direct communication by Einstein-Podolsky-Rosen pairs and entanglement swapping. Nuovo Cimento B, 2004, 119: 313–317

    ADS  Google Scholar 

  7. Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett, 2005, 22: 18–21

    Article  ADS  Google Scholar 

  8. Gao T, Yan F L, Wang Z X. Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J Phys A-Math Gen, 2005, 38: 5761–5770

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

    Article  ADS  Google Scholar 

  10. Wang G Y, Fang X M, Tan X H. Quantum secure direct communication with cluster state. Chin Phys Lett, 2006, 23: 2658–2661

    Article  ADS  Google Scholar 

  11. Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67–70

    Article  ADS  Google Scholar 

  12. Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338

    Article  ADS  Google Scholar 

  13. Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B-Atom Mol Opt Phys, 2006, 39: 3855–3863

    Article  ADS  Google Scholar 

  14. Deng F G, Li X H, Li C Y, et al. Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2006, 359: 359–365

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Li X H, Zhou P, Liang Y J, et al. Quantum secure direct communication network with two-step protocol. Chin Phys Lett, 2006, 23: 1080–1083

    Article  ADS  Google Scholar 

  16. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149–2153

    Article  ADS  Google Scholar 

  17. Chen Y, Man Z X, Xia Y J. Quantum bidirectional secure direct communication via entanglement swapping. Chin Phys Lett, 2007, 24: 19–22

    Article  ADS  MATH  Google Scholar 

  18. Deng F G, Long G L. Secure direct communication with a quantum onetime pad. Phys Rev A, 2004, 69: 052319

    Article  ADS  Google Scholar 

  19. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  20. Yang Y G, Wen Q Y. Threshold quantum secure direct communication without entanglement. Sci China Ser G-Phys Mech Astron, 2008, 51: 176–183

    Article  ADS  MATH  Google Scholar 

  21. Zanardi P, Rasstti M. Noiseless quantum codes. Phys Rev Lett, 1997, 79: 3306–3309

    Article  ADS  Google Scholar 

  22. Knill E, Laflamme R, Viola L. Theory of quantum error correction for general noise. Phys Rev Lett, 2000, 84: 2525–2528

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Kempe J, Bacon D, Lidar D A, et al. Theory of decoherence-free fault-tolerant universal quantum computation. Phys Rev A, 2001, 63: 042307

    Article  ADS  Google Scholar 

  24. Ge H, Liu W Y. A new quantum secure direct communication protocol using decoherence-free subspace. Chin Phys Lett, 2007, 24: 2727–2729

    Article  ADS  Google Scholar 

  25. Qin S J, Gao F, Wen Q Y, et al. Robust quantum secure direct communication over collective rotating channel. Commun Theor Phys, 2010, 53: 645–647

    Article  ADS  MATH  Google Scholar 

  26. Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302

    Article  ADS  Google Scholar 

  27. Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  28. Lidar D A, Bacon D, Kempe J, et al. Protecting quantum information encoded in decoherence-free states against exchange errors. Phys Rev A, 2000, 61: 052307

    Article  ADS  Google Scholar 

  29. Walton Z D, Abouraddy A F, Sergienko A V, et al. Decoherence-free subspaces in quantum key distribution. Phys Rev Lett, 2003, 91: 087901

    Article  ADS  Google Scholar 

  30. Boileau J C, Gottesman D, Laflamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel. Phys Rev Lett, 2004, 92: 017901

    Article  ADS  Google Scholar 

  31. Bourennane M, Eibl M, Gaertner S, et al. Decoherence-free quantum information processing with four-photon entangled states. Phys Rev Lett, 2004, 92: 107901

    Article  ADS  Google Scholar 

  32. Yamamoto T, Shimamura J, Ozdemir S K, et al. Faithful qubit distribution assisted by one additional qubit against collective noise. Phys Rev Lett, 2005, 95: 040503

    Article  ADS  Google Scholar 

  33. Wang X B. Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys Rev A, 2005, 72: 050304

    Article  ADS  Google Scholar 

  34. Zhang Z J. Robust multiparty quantum secret key sharing over two collective-noise channels. Physica A, 2006, 361: 233–238

    Article  ADS  Google Scholar 

  35. Li X H, Deng F G, Zhou H Y. Faithful qubit transmission against collective noise without ancillary qubits. Appl Phys Lett, 91: 144101

  36. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  ADS  Google Scholar 

  37. Gu B, Pei S X, Song B, et al. Deterministic secure quantum communication over a collective-noise channel. Sci China Ser G-Phys Mech Astron, 2009, 52: 1913–1918

    Article  ADS  Google Scholar 

  38. Qin S J, Wen Q Y, Meng L M, et al. Quantum secure direct communication over the collective amplitude damping channel. Sci China Ser G-Phys Mech Astron, 2009, 52: 1208–1212

    Article  ADS  Google Scholar 

  39. Li X H, Zhao B K, Sheng Y B, et al. Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int J Quantum Inform, 2009, 8: 1479–1489

    Article  Google Scholar 

  40. Xiu X M, Dong L, Gao Y J, et al. Quantum key distribution protocols with six-photon states against collective noise. Opt Commun, 2009, 282: 4171–4174

    Article  ADS  Google Scholar 

  41. Dong L, Xiu X M, Gao Y J, et al. Deterministic secure quantum communication against collective-dephasing noise by using EPR pairs and auxiliary photons. Opt Commun, 2009, 282: 1688–1690

    Article  ADS  Google Scholar 

  42. Sun Y, Wen Q Y, Gao F, et al. Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys Rev A, 2009, 80: 032321

    Article  ADS  Google Scholar 

  43. Sun Y, Wen Q Y, Zhu F C. Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack. Opt Commun, 2010, 283: 181–183

    Article  ADS  Google Scholar 

  44. Gu B, Mu L, Ding L, et al. Fault tolerant three-party quantum secret sharing against collective noise. Opt Commun, 2010, 283: 3099–3103

    Article  ADS  Google Scholar 

  45. Collins D, Gisin N, Riedmatten H D. Quantum relays for long distance quantum cryptography. J Mod Opt, 2005, 52: 735–753

    Article  ADS  MATH  Google Scholar 

  46. Wang W Y, Wang C, Zhang G Y, et al. Arbitrarily long distance quantum communication using inspection and power insertion. Chin Sci Bull, 2009, 54: 158–162

    Article  Google Scholar 

  47. Xu F X, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin Sci Bull, 2009, 54: 2991–2997 Li C Z. Real applications of quantum communications in China. Chin Sci Bull, 2009, 54: 2976–2977

    Article  Google Scholar 

  48. Li C Z. Real applications of quantum communications in China. Chin Sci Bull, 2009, 54: 2976–2977

    Article  Google Scholar 

  49. Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum. Front Phys China, 2007, 2: 251–272

    Article  ADS  Google Scholar 

  50. Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett, 2005, 22: 1049–1052

    Article  ADS  Google Scholar 

  51. Li C Y, Li X H, Deng F G, et al. Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett, 2006, 23: 2897–2899

    MathSciNet  ADS  Google Scholar 

  52. Bennett C H, Brassadrd G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of IEEE Inter-national Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984, 175–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Tsai, C. & Hwang, T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 54, 496–501 (2011). https://doi.org/10.1007/s11433-011-4245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4245-9

Keywords