Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Frozen-in Fractals All Around: Inferring the Large-Scale Effects of Small-Scale Magnetic Structure

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The large-scale structure of the magnetic field in the solar corona provides the energy to power large-scale solar eruptive events. Our physical understanding of this structure, and hence our ability to predict these events, is limited by the type of data currently available. It is shown that the multifractal spectrum is a powerful tool to study this structure, by providing a physical connection between the details of photospheric magnetic gradients and current density at all size scales. This uses concepts associated with geometric measure theory and the theory of weakly differentiable functions to compare Ampère’s law to the wavelet-transform modulus maximum method. The Hölder exponent provides a direct measure of the rate of change of current density across spatial size scales. As this measure is independent of many features of the data (pixel resolution, data size, data type, presence of quiet-Sun data), it provides a unique approach to studying magnetic-field complexity and hence a potentially powerful tool for a statistical prediction of solar-flare activity. Three specific predictions are provided to test this theory: the multifractal spectra will not be dependent on the data type or quality; quiet-Sun gradients will not persist with time; structures with high current densities at large size scales will be the source of energy storage for solar eruptive events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abramenko, V.I.: 2005, Multifractal analysis of solar magnetograms. Solar Phys. 228, 29. ADS . DOI .

    Article  ADS  Google Scholar 

  • Abramenko, V.I., Yurchyshyn, V.B.: 2010, Intermittency and multifractality spectra of the magnetic field in solar active regions. Astrophys. J. 722, 122.

    Article  ADS  Google Scholar 

  • Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2010, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, L41.

    Article  ADS  Google Scholar 

  • Charon, N., Trouvé, A.: 2013, A new mathematical tool to model and analyse functional shapes. J. Math. Imaging Vis. 48, 413.

    Article  Google Scholar 

  • Conlon, P.A., Gallagher, P.T., McAteer, R.T.J., Ireland, J., Young, C.A., Kestener, P., et al.: 2008, Multifractal properties of evolving active regions. Solar Phys. 248, 297. ADS . DOI .

    Article  ADS  Google Scholar 

  • Conlon, P.A., McAteer, R.T.J., Gallagher, P.T., Fennell, L.: 2010, Quantifying the evolving magnetic structure of active regions. Astrophys. J. 722, 577.

    Article  ADS  Google Scholar 

  • De Rosa, M.L., Schrijver, C.J., Graham, G., Leka, K.D., Lites, B., Aschwanden, M.J.: 2009, A critical assessment of nonlinear force-free field modeling of the solar corona for active region 10 953. Astrophys. J. 696, 1780.

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2013, Toward an efficient prediction of solar flares: which parameters, and how? Entropy 15, 5022.

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Rust, D.M., Bernasconi, P.N., Schmieder, B.: 2002, Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575, 506.

    Article  ADS  Google Scholar 

  • Hewett, R.J., Gallagher, P.T., McAteer, R.T.J.: 2008, Multiscale analysis of active region evolution. Solar Phys. 248, 311. ADS . DOI .

    Article  ADS  Google Scholar 

  • Ireland, J., Young, C.A., McAteer, R.T.J., Whelan, C., Hewett, R.J., Gallagher, P.T.: 2008, Multiresolution analysis of active region magnetic structure and its correlation with the Mount Wilson classification and flaring activity. Solar Phys. 252, 121. ADS . DOI .

    Article  ADS  Google Scholar 

  • Kestener, P., Conlon, P.A., Khalil, A., Fennell, L., McAteer, R.T.J., Gallagher, P.T., Arneodo, A.: 2010, Characterizing complexity in solar magnetogram data using a wavelet-based segmentation method. Astrophys. J. 717, 995.

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656, 1173.

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2008, Evaluating the performance of solar flare forecasting methods. Astrophys. J. Lett. 688, L107.

    Article  ADS  Google Scholar 

  • Leonarduzzi, R., Wendt, H., Jaffard, S., Roux, S.G., Torres, M.E., Abry, P.: 2014, Extending multifractal analysis to negative regularity: P-exponents and P-leaders. In: IEEE Internat. Conf. Acoustics, Speech Signal Processing (ICASSP), 305. DOI .

    Google Scholar 

  • Makarenko, N.G., Karimovab, L.M., Kozelovc, B.V., Novakd, M.M.: 2012, Multifractal analysis on Choquet capacity: application to solar magnetograms. Physica A 391, 4290.

    Article  ADS  Google Scholar 

  • McAteer, R.T.J.: 2013, SOC and fractal geometry. In: Aschwanden, M.A. (ed.) Self Organized Criticality Systems, 73. www.openacademicpress.de/ojs2/index.php/socs .

    Google Scholar 

  • McAteer, R.T.J., Bloomfield, D.S.: 2013, The bursty nature of solar flare X-ray emission. II. The Neupert effect. Astrophys. J. 776, 66.

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Conlon, P.A.: 2010, Turbulence, complexity, and solar flares. Adv. Space Res. 45, 1067.

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Ireland, J.: 2005, Statistics of active region complexity: a large-scale fractal dimension survey. Astrophys. J. 631, 628.

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Young, C.A., Ireland, J., Gallagher, P.T.: 2007, The bursty nature of solar flare X-ray emission. Astrophys. J. 662, 691.

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Kestener, P., Arneodo, A., Khalil, A.: 2010, Automated detection of coronal loops using a wavelet transform modulus maxima method. Solar Phys. 262, 387. ADS . DOI .

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Aschwanden, M.J., Dimitropoulou, M., Georgoulis, M.K., Pruessner, G., Morales, L., et al.: 2015, 25 years of self-organized criticality: numerical detection methods. Space Sci. Rev. DOI .

    Google Scholar 

  • Muzy, J.F., Bacry, E., Arneodo, A.: 1991, Wavelets and multifractal formalism for singular signals. Phys. Rev. Lett. 67, 3515.

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117.

    Article  ADS  Google Scholar 

  • Turiel, A., Yahia, H., Pérez-Vicente, C.J.: 2008, Microcanonical multifractal formalism: a geometrical approach to multifractal systems. P.1. Singularity analysis. J. Phys. A 41, 015501.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by National Science Foundation Career award NSS AGS-1255024 and NASA contract NNH12CG10C. The author thanks the referee for useful insight and several very useful references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. James McAteer.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAteer, R.T.J. Frozen-in Fractals All Around: Inferring the Large-Scale Effects of Small-Scale Magnetic Structure. Sol Phys 290, 1897–1907 (2015). https://doi.org/10.1007/s11207-015-0733-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0733-9

Keywords