Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Magnetic Turbulence in the Geospace Environment

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Magnetic turbulence is found in most space plasmas, including the Earth’s magnetosphere, and the interaction region between the magnetosphere and the solar wind. Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, in the magnetotail, and in the high latitude ionosphere are reviewed. It is found that: 1. A large share of magnetic turbulence in the geospace environment is generated locally, as due for instance to the reflected ion beams in the ion foreshock, to temperature anisotropy in the magnetosheath and the polar cusp regions, to velocity shear in the magnetosheath and magnetotail, and to magnetic reconnection at the magnetopause and in the magnetotail. 2. Spectral indices close to the Kolmogorov value can be recovered for low frequency turbulence when long enough intervals at relatively constant flow speed are analyzed in the magnetotail, or when fluctuations in the magnetosheath are considered far downstream from the bow shock. 3. For high frequency turbulence, a spectral index α≃2.3 or larger is observed in most geospace regions, in agreement with what is observed in the solar wind. 4. More studies are needed to gain an understanding of turbulence dissipation in the geospace environment, also keeping in mind that the strong temperature anisotropies which are observed show that wave particle interactions can be a source of wave emission rather than of turbulence dissipation. 5. Several spacecraft observations show the existence of vortices in the magnetosheath, on the magnetopause, in the magnetotail, and in the ionosphere, so that they may have a primary role in the turbulent injection and evolution. The influence of such a turbulence on the plasma transport, dynamics, and energization will be described, also using the results of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G.A. Abel, M.P. Freeman, A statistical analysis of ionospheric velocity and magnetic field power spectra at the time of pulsed ionospheric flows. J. Geophys. Res. 107(A12), 1470 (2002). doi:10.1029/2002JA009402

    Article  Google Scholar 

  • G.A. Abel, M.P. Freeman, G. Chisham, Spatial structure of ionospheric convection velocities in regions of open and closed magnetic field topology. Geophys. Res. Lett. 33, L24103 (2006). doi:10.1029/2006GL027919

    Article  ADS  Google Scholar 

  • G.D. Aburjania et al., Generation and propagation of the ULF planetary-scale electromagnetic wavy structures in the ionosphere. Planet. Space Sci. 53, 881 (2005)

    Article  ADS  Google Scholar 

  • G.D. Aburjania, Kh.Z. Chargazia, G. Zimbardo, Model of strong stationary vortical turbulence in the space plasma. Nonlinear Proc. Geophys. 16, 11–22 (2009)

    Article  ADS  Google Scholar 

  • O. Alexandrova et al., Cluster observations of finite amplitude Alfvén waves and small-scale magnetic filaments downstream of a quasi-perpendicular shock. J. Geophys. Res. 109, A05207 (2004). doi:10.1029/2003JA010056

    Article  Google Scholar 

  • O. Alexandrova, A. Mangeney, M. Maksimovic, N. Cornilleau-Wehrlin, J.-M. Bosqued, M. Andre, Alfvén vortex filaments observed in magnetosheath downstream of a quasiperpendicular bow shock. J. Geophys. Res. 111, A12208 (2006). doi:10.1029/2006JA011934

    Article  ADS  Google Scholar 

  • O. Alexandrova, V. Carbone, P. Veltri, L. Sorriso-Valvo, Solar wind CLUSTER observations: turbulent spectra and the role of Hall effect. Planet. Space Sci. 55, 2224–2227 (2007)

    Article  ADS  Google Scholar 

  • O. Alexandrova, Solar wind vs magnetosheath turbulence and Alfvén vortices. Nonlinear Process. Geophys. 15, 95–108 (2008)

    Article  ADS  Google Scholar 

  • O. Alexandrova, C. Lacombe, A. Mangeney, Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations. Ann. Geophys. 26, 3585 (2008a)

    Article  ADS  Google Scholar 

  • O. Alexandrova, V. Carbone, P. Veltri, L. Sorriso-Valvo, Small scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 1153–1157 (2008b)

    Article  ADS  Google Scholar 

  • O. Alexandrova, J. Saur, Alfvén vortices in Saturn’s magnetosheath: Cassini observations. J. Geophys. Lett. 35, L15102 (2008)

    Article  ADS  Google Scholar 

  • O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S.J. Schwartz, P. Robert, Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103, 165003 (2009)

    Article  ADS  Google Scholar 

  • V. Angelopoulos et al., Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 4027 (1992)

    Article  ADS  Google Scholar 

  • K. Arzner, M. Scholer, R.A. Treumann, Percolation of charged particle orbits in two-dimensional irregular magnetic fields and its effect in the magnetospheric tail. J. Geophys. Res. 107(A4), 5-1 (2002)

    Article  Google Scholar 

  • Y. Asano, R. Nakamura, W. Baumjohann, A. Runov, Z. Voros, M. Volwerk et al., How typical are atypical current sheets? Geophys. Res. Lett. 32, L03108 (2005)

    Article  Google Scholar 

  • T.M. Bauer, W. Baumjohann, R.A. Treumann, N. Sckopke, H. Luhr, Low-frequency waves in the near-Earth’s plasma sheet. J. Geophys. Res. 100, 9605 (1995)

    Article  ADS  Google Scholar 

  • J.W. Belcher, L. Davis Jr., Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534 (1971)

    Article  ADS  Google Scholar 

  • R.J. Bickerton, Magnetic turbulence and the transport of energy and particles in tokamaks. Plasma Phys. Control. Fusion 39, 339 (1997)

    Article  ADS  Google Scholar 

  • D. Biskamp, in Turbulence and Magnetic Fields in Astrophysics Series, ed. by E. Falgarone, T. Passot. Lecture Notes in Physics, vol. 614 (Springer, Berlin, 2003)

    Google Scholar 

  • D. Biskamp, E. Schwarz, J.F. Drake, Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Lett. 76, 1264 (1996)

    Article  ADS  Google Scholar 

  • D. Biskamp, E. Schwarz, A. Zeiler, A. Celani, J.F. Drake, Electron magnetohydrodynamic turbulence. Phys. Plasmas 6, 751–758 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  • J. Blecki, R. Wronovski, S. Savin et al., Low-frequency plasma waves in the outer polar cusp: a review of observations from PROGNOZ 8, INTERBALL 1, MAGION 4, and CLUSTER. Surv. Geophys. 26, 177 (2005)

    Article  ADS  Google Scholar 

  • J.E. Borovsky, H.O. Funsten, MHD turbulence in the Earth’s plasma sheet: dynamics, dissipation and driving. J. Geophys. Res. 108, 1284 (2003a). doi:10.1029/2002JA009625

    Article  Google Scholar 

  • J.E. Borovsky, H.O. Funsten, Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. 108, 1246 (2003b). doi:10.1029/2002JA009601

    Article  Google Scholar 

  • J.E. Borovsky, R.C. Elphic, H.O. Funsten, M.F. Thomsen, The Earth’s plasma sheet as a laboratory for flow turbulence in high-B MHD. J. Plasma Phys. 57, 1 (1997)

    Article  ADS  Google Scholar 

  • D.L. Brower, W.A. Peebles, N.C. Luhmann, The spectrum, spatial distribution and scaling of microturbulence in the Text Tokamak. Nucl. Fusion 27, 2055–2073 (1987)

    Article  Google Scholar 

  • T. Browley, E. Mazzuccato, Scaling of density fluctuations in PDX. Nucl. Fusion 25, 507–524 (1985)

    Article  Google Scholar 

  • R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 2(4), 186 (2005)

    Google Scholar 

  • J. Büchner, Theory and simulation of reconnection. In memoriam Harry Petschek. Space Sci. Rev. 124, 345–360 (2006)

    Article  ADS  Google Scholar 

  • J. Büchner, Astrophysical reconnection and collisionless dissipation. Plasma Phys. Control. Fusion 49, B325–B339 (2007)

    Article  ADS  Google Scholar 

  • J. Büchner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals. I—Basic theory of trapped motion. J. Geophys. Res. 94, 11,821 (1989)

    Article  ADS  Google Scholar 

  • V. Carbone, R. Marino, L. Sorriso-Valvo, A. Noullez, R. Bruno, Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations. Phys. Rev. Lett. 103, 061102 (2009)

    Article  ADS  Google Scholar 

  • P.J. Cargill et al., Cluster at the magnetospheric cusps. Space Sci. Rev. 118, 321–366 (2005). doi:10.1007/s11214-005-3835-0

    Article  ADS  Google Scholar 

  • C.C. Chaston, C.W. Carlson, R.E. Ergun, J.P. McFadden, FAST observations of inertial Alfvén waves in the dayside aurora. Geophys. Res. Lett. 26, 647–650 (1999)

    Article  ADS  Google Scholar 

  • C.C. Chaston, M. Wilber, F.S. Mozer, M. Fujimoto, M.L. Goldstein, M. Acuna, H. Reme, A. Fazakerley, Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfvén waves at the Earth’s magnetopause. Phys. Rev. Lett. 99, 175004 (2007)

    Article  ADS  Google Scholar 

  • J. Chen, T.A. Fritz, Correlation of cusp MeV helium with turbulent ULF power spectra and its implications. Geophys. Res. Lett. 25, 4113 (1998)

    Article  ADS  Google Scholar 

  • J. Chen, T.A. Fritz, R.B. Sheldon et al., Cusp energetic particle events: implications for a major acceleration region of the magnetosphere. J. Geophys. Res. 103, 69–78 (1998)

    Article  ADS  Google Scholar 

  • C.H.K. Chen, T.S. Horbury, A.A. Schekochihin, R.T. Wicks, O. Alexandrova, J. Mitchell, Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 104, 255002 (2010)

    Article  ADS  Google Scholar 

  • L. Chevilard, B. Castaing, E. Lévêque, On rapid decrease of intermittency in the near-dissipation range of fully developed turbulence. Eur. Phys. J. B 45, 561–567 (2005)

    Article  ADS  Google Scholar 

  • F. Chiaravalloti, A.V. Milovanov, G. Zimbardo, Self-similar transport processes in a two-dimensional realization of multiscale magnetic field turbulence. Phys. Scripta 73, 1 (2006)

    Article  Google Scholar 

  • V. Chmyrev, S.V. Bilichenko, O.A. Pokhotelov et al., Alfvén vortices and related phenomena in the ionosphere and the magnetosphere. Phys. Scripta 38, 841 (1988)

    Article  ADS  Google Scholar 

  • P.J. Coleman, Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371 (1968)

    Article  ADS  Google Scholar 

  • G. Consolini, P. De Michelis, A. Meloni, L. Cafarella, M. Candidi, Levy-stable probability distribution of magnetic field fluctuations at Terra Nova Bay (Antartica), in Conf. Proceed. “Italian Research on Antarctic Atmosphere”, ed. by M. Colacino, G. Giovanelli, L. Stefanutti (SIF, Bologna, 1998), pp. 367–376

    Google Scholar 

  • G. Consolini, M. Kretzschmar, A.T.Y. Lui, G. Zimbardo, W.M. Macek, On the magnetic field fluctuations during magnetospheric tail current disruption: a statistical approach. J. Geophys. Res. 110, A07202 (2005)

    Article  Google Scholar 

  • A. Czaykowska, T.M. Bauer, R.A. Treumann, W. Baumjohann, Magnetic field fluctuations across the Earth’s bow shock. Ann. Geophys. 19, 275–287 (2001)

    Article  ADS  Google Scholar 

  • S. Dalena, A. Greco, G. Zimbardo, P. Veltri, Role of oxygen ions in the formation of a bifurcated current sheet in the magnetotail. J. Geophys. Res. 115, A03213 (2010)

    Article  Google Scholar 

  • P.H. Diamond, B.A. Carreras, On mixing length theory and saturated turbulence. Plasma Phys. Control Fusion 10, 271–278 (1987)

    Google Scholar 

  • M. Dobrowolny, A. Mangeney, P. Veltri, Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961)

    Article  ADS  Google Scholar 

  • T.H. Dupree, Theory of phase space density granulation on plasma. Phys. Fluids 15, 334–344 (1972)

    Article  ADS  Google Scholar 

  • J.P. Eastwood, A. Balogh, M.W. Dunlop, T.S. Horbury, I. Dandouras, Cluster observations of fast magnetosonic waves in the terrestrial foreshock. Geophys. Res. Lett. 29, 220,000-1 (2002)

    Article  Google Scholar 

  • J.P. Eastwood, A. Balogh, E.A. Lucek, C. Mazelle, I. Dandouras, On the existence of Alfvén waves in the terrestrial foreshock. Ann. Geophys. 21, 1457–1465 (2003)

    Article  ADS  Google Scholar 

  • J.P. Eastwood, E.A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, R.A. Treumann, The Foreshock. Space Sci. Rev. 118, 41–94 (2005)

    Article  ADS  Google Scholar 

  • M. Faganello, F. Califano, F. Pegoraro, Numerical evidence of undriven fast reconnection in the solar-wind interaction with Earth’s magnetosphere: formation of electromagnetic coherent structures. Phys. Rev. Lett. 101, 105001 (2008)

    Article  ADS  Google Scholar 

  • U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  • T.A. Fritz, Q.G. Zong, The Magnetospheric cusps: a summary. Surv. Geophys. 26, 409 (2005)

    Article  ADS  Google Scholar 

  • A.A. Galeev, M.M. Kuznetsova, L.M. Zelenyi, Magnetopause stability threshold for patchy reconnection. Space Sci. Rev. 44, 1–41 (1986)

    Article  ADS  Google Scholar 

  • S. Galtier, E. Buchlin, Multiscale Hall-magnetohydrodynamic turbulence in the solar wind. Astrophys. J. 656, 560–566 (2007)

    Article  ADS  Google Scholar 

  • W. Gekelman, Review of laboratory experiments on Alfvén waves and their relationship to space observations. J. Geophys. Res. 104, 14,417–14,435 (1999)

    ADS  Google Scholar 

  • A. Greco, A.L. Taktakishvili, G. Zimbardo, P. Veltri, L.M. Zelenyi, Ion dynamics in the near Earth magnetotail: magnetic turbulence versus normal component of the average magnetic field. J. Geophys. Res. 107, 115 (2002)

    Article  Google Scholar 

  • A. Greco, A.L. Taktakishvili, G. Zimbardo, P. Veltri, G. Cimino, L.M. Zelenyi, R.E. Lopez, Ion transport and Lévy random walk across the magnetopause in the presence of magnetic turbulence. J. Geophys. Res. 108, 1395 (2003)

    Article  Google Scholar 

  • A. Greco, S. Perri, G. Zimbardo, L.M. Zelenyi, Particle acceleration by stochastic fluctuations and dawn-dusk electric field in the Earth’s magnetotail. Adv. Space Res. 44, 528–533 (2009)

    Article  ADS  Google Scholar 

  • A. Greco, S. Perri, G. Zimbardo, Stochastic Fermi acceleration in the magnetotail current sheet: a numerical study. J. Geophys. Res. 115, A02203 (2010)

    Article  Google Scholar 

  • E.E. Grigorenko, J.-A. Sauvaud, L.M. Zelenyi, Spatial-temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail. J. Geophys. Res. 112, A05218 (2007). doi:10.1029/2006JA011986

    Article  Google Scholar 

  • E.E. Grigorenko, M. Hoshino, M. Hirai, T. Mukai, L.M. Zelenyi, “Geography” of ion acceleration in the magnetotail: X-line versus current sheet effects. J. Geophys. Res. 114, A03203 (2009)

    Article  Google Scholar 

  • G. Haerendel, G. Paschmann, N. Sckopke, H. Rosenbauer, The frontside boundary layer of the magnetosphere and the problem of reconnection. J. Geophys. Res. 83, 3195–3216 (1978)

    Article  ADS  Google Scholar 

  • H. Hasegawa, M. Fujimoto, T.-D. Phan, H. Reme, A. Balogh, M.W. Dunlop, C. Hashimoto, R. TanDokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430, 755 (2004)

    Article  ADS  Google Scholar 

  • T. S. Horbury, M. Forman, S. Oughton, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101, 175005 (2008)

    Article  ADS  Google Scholar 

  • W. Horton, Drift turbulence and anomalous transport, in Basic Plasma Physics, vol. 2, ed. by A.A. Galeev, R.N. Sudan (North-Holland, Amsterdam, 1985)

    Google Scholar 

  • M. Hoshino, A. Nishida, T. Yamamoto, S. Kokubun, Turbulent magnetic field in the distant magnetotail: bottom-up process of plasmoid formation? Geophys. Res. Lett. 21, 2935 (1994)

    Article  ADS  Google Scholar 

  • M. Hoshino, A. Nishida, T. Mukai, Y. Saito, T. Yamamoto, S. Kokubun, Structure of plasma sheet in magnetotail: duoble-peaked electric current sheet. J. Geophys. Res. 101, 24,775 (1996)

    Article  ADS  Google Scholar 

  • W.J. Hughes, The magnetopause, magnetotail, and magnetic reconnection, in Introduction to Space Physics, ed. by M.G. Kivelson, C.T. Russell (Cambridge University Press, Cambridge, 1995), p. 227

    Google Scholar 

  • P.S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566 (1964)

    MathSciNet  ADS  Google Scholar 

  • A. Keiling, V. Angelopoulos, A. Runov et al., Substorm current wedge driven by plasma flow vortices: THEMIS observations. J. Geophys. Res. 114, A00C22 (2009)

    Article  Google Scholar 

  • A. Klimas, V. Uritsky, E. Donovan, Multiscale auroral emission statistics as evidence of turbulent reconnection in Earth’s midtail plasma sheet. J. Geophys. Res. 115, A06202 (2010)

    Article  Google Scholar 

  • A.N. Kolmogorov, The local structure of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR, 301–305 (1941)

  • R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids, 1385–1387 (1965)

  • J. Labelle, R.A. Treumann, Plasma waves at the dayside magnetopause. Space Sci. Rev. 47, 175–202 (1988)

    Article  ADS  Google Scholar 

  • C. Lacombe, A.A. Samsonov, A. Mangeney, M. Maksimovic, N. Cornilleau-Wehrlin, C.C. Harvey, J.-M. Bosqued, P. Trávníček, Cluster observations in the magnetosheath—Part 2: Intensity of the turbulence at electron scales. Ann. Geophys. 24, 3523 (2006)

    Article  ADS  Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, W.H. Matthaeus, H.K. Wong, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775–4787 (1998)

    Article  ADS  Google Scholar 

  • R.L. Lysak, Electromagnetic coupling of the magnetosphere and ionosphere. Space Sci. Rev. 52, 33–87 (1990)

    Article  ADS  Google Scholar 

  • B.T. MacBride, M.A. Forman, C.W. Smith, Turbulence and the third moment of fluctuations: Kolmogorov’s 4/5 law and its MHD analogues in the solar wind, in Solar Wind 11, ed. by B. Fleck and T. H. Zurbuchen, ESA Spec. Publ., ESA SP-592, 613 (2005)

  • B.T. MacBride, C.W. Smith, M.A. Forman, The turbulent cascade at 1 AU: energy transfer and the third-order scaling for MHD. Astrophys J. 679, 1644–1660 (2008)

    Article  ADS  Google Scholar 

  • A. Mangeney, C. Lacombe, M. Maksimovic, A.A. Samsonov, N. Cornilleau-Wehrlin, C.C. Harvey, J.-M. Bosqued, P. Travnicek, Cluster observations in the magnetosheath—Part 1: Anisotropies of the wave vector distribution of the turbulence at electron scales. Ann. Geophys. 24, 3507–3521 (2006). http://www.ann-geophys.net/24/3507/2006/

    Article  ADS  Google Scholar 

  • R. Marino, L. Sorriso-Valvo, V. Carbone, A. Noullez, R. Bruno, B. Bavassano, Astrophys J. 677, L71 (2008)

    Article  ADS  Google Scholar 

  • W. Masood, S.J. Schwartz, M. Maksimovic, A.N. Fazakerley, Electron velocity distribution and lion roars in the magnetosheath. Ann. Geophys. 24, 1725 (2006)

    Article  ADS  Google Scholar 

  • Y. Matsumoto, M. Hoshino, Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer. J. Geophys. Res. 111, A05213 (2006)

    Article  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, Low-frequency 1/f noise in the interplanetary magnetic field. Phys. Rev. Lett. 57, 495–498 (1986)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, G. Zimbardo, Percolation in sign-symmetric random fields: topological aspects and numerical modeling. Phys. Rev. E 62, 250–260 (2000)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, L.M. Zelenyi, G. Zimbardo, Fractal structures and power law spectra in the distant Earth’s magnetotail. J. Geophys. Res. 101, 19,903 (1996)

    Article  ADS  Google Scholar 

  • Y. Narita, K.-H. Glassmeier, R.A. Treumann, Wave-number spectra and intermittency in the terrestrial foreshock region. Phys. Rev. Lett. (2006). doi:10.1103/PhysRevLett.97.191101

    Google Scholar 

  • Y. Narita, K.-H. Glassmeier, M. Franz, Y. Nariyuki, T. Hada, Observation of linear and nonlinear processes in the foreshok wave evolution. Nonlinear Process. Geophys. 14, 361–371 (2007)

    Article  Google Scholar 

  • K. Nykyri, P.J. Cargill, E.A. Lucek, T.S. Horbury, A. Balogh, B. Lavraud, I. Dandouras, H. Reme, Ion cyclotron waves in the high altitude cusp: CLUSTER observations at varying spacecraft separations. Geophys. Res. Lett. 30(24), 2263 (2003). doi:10.1029/2003GL018594

    Article  Google Scholar 

  • K. Nykyri, P.J. Cargill, E.A. Lucek, T.S. Horbury, B. Lavraud, A. Balogh, M.W. Dunlop, Y. Bogdanova, A. Fazarkerley, I. Dandouras, H. Reme, Cluster observations of magnetic field fluctuations in the high-altitude cusp. Ann. Geophys. 22, 2413–2429 (2004)

    Article  ADS  Google Scholar 

  • K. Nykyri, B. Grison, P. Cargill, B. Lavraud, E. Lucek, I. Dandouras, A. Balogh, N. Cornilleau-Wehrlin, H. Reme, Origin of the turbulent spectra in the high-latitude cusp: Cluster spacecraft observations. Ann. Geophys. 24, 1–20 (2006)

    Article  Google Scholar 

  • M. Onofri, L. Primavera, F. Malara, P. Veltri, Three-dimensional simulations of magnetic reconnection in slab geometry. Phys. Plasmas 11, 4837 (2004)

    Article  ADS  Google Scholar 

  • S. Oughton, W.H. Matthaeus, S. Ghosh, Scaling of spectral anisotropy with magnetic field strength in decaying magnetohydrodynamic turbulence. Phys. Plasmas 5, 4235–4242 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  • M.L. Parkinson, Dynamical critical scaling of electric field fluctuations in the greater cusp and magnetotail implied by HF radar observations of F-region Doppler velocity. Ann. Geophys. 24, 689–705 (2006)

    Article  ADS  Google Scholar 

  • S. Perri, F. Lepreti, V. Carbone, A. Vulpiani, Position and velocity space diffusion of test particles in stochastic electromagnetic fields. Europhys. Lett. 78, 40003 (2007)

    Article  ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Evidence of superdiffusive transport of electrons accelerated at interplanetary shocks. Astrophys. J. Lett. 671, 177–180 (2007)

    Article  ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Superdiffusive transport of electrons accelerated at corotating interaction regions. J. Geophys. Res. 113, A03107 (2008). doi:10.1029/2007JA012695

    Article  Google Scholar 

  • S. Perri, G. Zimbardo, Ion superdiffusion at the solar wind termination shock. Astrophys. J. Lett. 693, L118–L121 (2009)

    Article  ADS  Google Scholar 

  • S. Perri, E. Yordanova, V. Carbone, P. Veltri, L. Sorriso-Valvo, R. Bruno, M. André, Magnetic turbulence in space plasmas: scale-dependent effects of anisotropy. J. Geophys. Res. 114, A02102 (2009a)

    Article  Google Scholar 

  • S. Perri, A. Greco, G. Zimbardo, Stochastic and direct acceleration mechanisms in the Earth’s magnetotail. Geophys. Res. Lett. 36, L04103 (2009b)

    Article  Google Scholar 

  • J.L. Pincon, U. Motschmann, Multi-spacecraft filtering: general framework, in Analysis Methods for Multi-Spaacecraft Data, ed. by G. Paschmann and P. W. Daly. ISSI Scientific Report SR-001, 65–78, ISSI/ESA (1998)

  • H. Politano, A. Pouquet, Dynamical length scales for turbulent magnetized flows. Geophys. Res. Lett. 25, 273–276 (1998)

    Article  ADS  Google Scholar 

  • P. Pommois, G. Zimbardo, P. Veltri, Anomalous, non-Gaussian transport of charged particles in anisotropic magnetic turbulence. Phys. Plasmas 14, 012311 (2007)

    Article  ADS  Google Scholar 

  • L. Rezeau, A. Morane, S. Perraut, A. Roux, R. Schmidt, Characterization of Alfvénic fluctuations in the magnetopause boundary layer. J. Geophys. Res. 94, 101 (1989)

    Article  ADS  Google Scholar 

  • C.T. Russell, Noise in the geomagnetic tail. Planet. Space Sci. 20, 1541 (1972)

    Article  ADS  Google Scholar 

  • R.Z. Sagdeev, S.S. Mocseev, A.V. Tur, V.V. Yanovskii, Problems of the theory of strong turbulence and topological solitons, in Non-Linear Phenomena in Plasma Physics and Hydrodynamics, ed. by R.Z. Sagdeev (Mir, Moscow, 1986), pp. 131–182

    Google Scholar 

  • F. Sahraoui, G. Belmont, J.L. Pincon et al., Magnetic turbulent spectra in the magnetosheath: the k-filtering technique applied to Cluster II data. J. Geophys. Res. 108, 1335 (2003). doi:10.1029/2002JA009587

    Article  Google Scholar 

  • F. Sahraoui, J.L. Pincon, G. Belmont et al., ULF wave identification in the magnetosheath: new insights. Ann. Geophys. 22, 2283–2288 (2004)

    Article  ADS  Google Scholar 

  • F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-Wehrlin, J.L. Pincon, A. Balogh, Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the cluster spacecraft. Phys. Rev. Lett. 96, 075002 (2006)

    Article  ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, P. Robert, Yu.V. Khotyaintsev, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102 (2009)

    Article  ADS  Google Scholar 

  • A. Samsonov, Numerical modelling of the Earth’s magnetosheath for different IMF orientations. Adv. Space Res. 38, 1652 (2006)

    Article  ADS  Google Scholar 

  • S. Savin, J. Büchner, G. Consolini et al., On the properties of turbulent boundary layer over polar cusps. Nonlinear Proc. Geophys. 9, 443 (2002a)

    Article  ADS  Google Scholar 

  • S.P. Savin, L.M. Zelenyi, N.C. Maynard, I. Sandhal et al., Multi-spacecraft tracing of turbulent boundary layer. Adv. Space Res. 30, 2821 (2002b)

    Article  ADS  Google Scholar 

  • S. Savin, A. Skalsky, L.M. Zelenyi et al., Magnetosheath interaction with the high latitude magnetopause. Surv. Geophys. 26, 95–133 (2005a)

    Article  ADS  Google Scholar 

  • S. Savin, L. Zelenyi, E. Amata, J. Buechner, J. Blecki, A. Greco, S. Klimov, R.E. Lopez, B. Nikutowski, E. Panov, J. Pickett, J.L. Rauch, S. Romanov, P. Song, A. Skalsky, V. Smirnov, A. Taktakishvili, P. Veltri, G. Zimbardo, Magnetosheath interaction with high latitude magnetopause: dynamic flow chaotization. Planet. Space Sci. 53, 133–140 (2005b)

    Article  ADS  Google Scholar 

  • S.J. Schwartz, D. Burgess, J.J. Moses, Low-frequency waves in the Earth’s magnetosheath: present status. Ann. Geophys. 14, 1134–1150 (1996)

    ADS  Google Scholar 

  • V.A. Sergeev et al., Non-substorm transient injection events in the ionosphere and magnetosphere. Planet. Space Sci. 38, 231 (1990)

    Article  ADS  Google Scholar 

  • V.A. Sergeev, D.G. Mitchell, C.T. Russel, D.J. Williams, Structure of the tail plasma/current sheet at 11 R E and its changes in the course of a substorm. J. Geophys. Res. 98, 17,345 (1993)

    ADS  Google Scholar 

  • C.W. Smith, K. Hamilton, B.J. Vasquez, R.J. Leamon, Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. 645, L85 (2006)

    Article  ADS  Google Scholar 

  • P. Song, R.C. Russell, R.J. Strangeway, J.R. Wygant, C.A. Cattell, R.J. Fitzenreiter, R.R. Anderson, Wave properties near the subsolar magnetopause—Pc 3–4 energy coupling for northward interplanetary magnetic field. J. Geophys. Res. 98, 187 (1993)

    Article  ADS  Google Scholar 

  • L. Sorriso-Valvo, V. Carbone, G. Consolini, R. Bruno, P. Veltri, Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 26, 1804 (1999)

    Article  ADS  Google Scholar 

  • L. Sorriso-Valvo et al., Intermittency in plasma turbulence. Planet. Space Sci. 49, 1193 (2001)

    Article  ADS  Google Scholar 

  • L. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F. Lepreti, P. Veltri, R. Bruno, B. Bavassano, E. Pietropaolo, Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001 (2007)

    Article  ADS  Google Scholar 

  • L. Sorriso-Valvo, V. Carbone, R. Marino, A. Noullez, R. Bruno, P. Veltri, Sorriso-Valvo et al. Reply. Phys. Rev. Lett. 104, 189002 (2010)

    Article  ADS  Google Scholar 

  • K. Stasiewicz, P. Bellan, C. Chaston, C. Kletzing, R. Lysak, J. Maggs, O. Pokhotelov, C. Seyler, P. Shukla, L. Stenflo, A. Streltsov, J.-E. Wahlund, Small scale Alfvénic structure in the aurora. Space Sci. Rev. 92, 423–533 (2000)

    Article  ADS  Google Scholar 

  • D. Sundkvist, V. Krasnoselskikh, P.K. Shukla et al., In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence. Nature 436, 825 (2005)

    Article  ADS  Google Scholar 

  • A. Taktakishvili, G. Zimbardo, E. Amata, S. Savin, A. Greco, P. Veltri, R.E. Lopez, Ion escape from the high latitude magnetopause: analysis of oxygen and proton dynamics in magnetic turbulence. Ann. Geophys. 25, 1877–1885 (2007)

    Article  ADS  Google Scholar 

  • A. Tjulin, J.-L. Pincon, F. Sahraoui, M. Andre, N. Cornilleau-Wehrlin, The k-filtering technique applied to wave electric and magnetic field measurements from the Cluster satellites. J. Geophys. Res. 110, A11224 (2005)

    Article  ADS  Google Scholar 

  • R.A. Treumann, Theory of super-diffusion for the magnetopause. Geophys. Res. Lett. 24, 1727–1730 (1997)

    Article  ADS  Google Scholar 

  • C.-Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73, 1–210 (1995)

    Article  ADS  Google Scholar 

  • P. Veltri, G. Zimbardo, Electron whistler interaction at the Earth’s bow shock. 1. Whistler instability. J. Geophys. Res. 98, 13325–13333 (1993a)

    Article  ADS  Google Scholar 

  • P. Veltri, G. Zimbardo, Electron whistler interaction at the Earth’s bow shock. 2. Electron pitch-angle diffusion. J. Geophys. Res. 98, 13335–13346 (1993b)

    Article  ADS  Google Scholar 

  • P. Veltri, G. Zimbardo, A.L. Taktakishvili, L.M. Zelenyi, Effect of magnetic turbulence on the ion dynamics in the distant magnetotail. J. Geophys. Res. 103, 14,897 (1998)

    Article  ADS  Google Scholar 

  • O. Verkhoglyadova, A. Agapitov, A. Andrushchenko, V. Ivchenko, S. Romanov, Yu. Yermolaev, Compressional wave events in the dawn plasma sheet observed by Interball-1. Ann. Geophys. 17, 1145–1154 (1999)

    Article  ADS  Google Scholar 

  • W.F. Vinen, R.J. Donnelly, Quantum turbulence. Phys. Today 60(4), 43–48 (2007)

    Article  Google Scholar 

  • Z. Vörös, W. Baumjohann, R. Nakamura, A. Runov et al., Multi-scale magnetic field intermittence in the plasma sheet. Ann. Geophys. 21, 1955 (2003)

    Article  ADS  Google Scholar 

  • Z. Vörös, W. Baumjohann, R. Nakamura, A. Runov et al., Wavelet analysis of magnetic turbulence in the Earth’s plasma sheet. Phys. Plasmas 11, 1333 (2004)

    Article  ADS  Google Scholar 

  • Z. Vörös, W. Baumjohann, R. Nakamura, R.A. Runov, M. Volwerk, Y. Asano, D. Jankovicova, E.A. Lucek, H. Reme, Spectral scaling in the turbulent Earth’s plasma sheet revisited. Nonlinear Proces. Geophys. 14, 535–541 (2007a)

    Article  ADS  Google Scholar 

  • Z. Vörös, W. Baumjohann, R. Nakamura, R.A. Runov, M. Volwerk, T. Takada, E.A. Lucek, H. Reme, Spatial structure of plasma flow associated turbulence in the Earth’s plasma sheet. Ann. Geophys. 25, 13–17 (2007b)

    Article  ADS  Google Scholar 

  • Z. Vörös, R. Nakamura, V. Sergeev, W. Baumjohann, A. Runov, T.L. Zhang, M. Volwerk, T. Takada, D. Jankovicova, E. Lucek, H. Reme, Study of reconnection associated multi-scale fluctuations with Cluster and Double Star. J. Geophys. Res. 113, A07S29 (2008). doi:10.1029/2007JA012688

    Article  Google Scholar 

  • R.E. Waltz, Subcritical magnetohydrodynamic turbulence. Phys. Rev. Lett. 55, 1098–1101 (1985)

    Article  ADS  Google Scholar 

  • Zh. Wang, M. Ashour-Abdalla, Simulation of magnetic field line stochasticity at the magnetopause. J. Geophys. Res. 99, 2321 (1994)

    Article  ADS  Google Scholar 

  • H. Weissen, Ch. Hollenstein, R. Benn, Turbulent density fluctuations in the Tokamak. Plasma Phys. Control Fusion 30, 293–309 (1988)

    Article  ADS  Google Scholar 

  • R.A. Wolf, Magnetospheric configuration, in Introduction to Space Physics, ed. by M.G. Kivelson, C.T. Russell (Cambridge University Press, Cambridge, 1995), p. 288

    Google Scholar 

  • E. Yordanova, J. Bergman, G. Consolini, M. Kretzschmar, M. Materassi, B. Popielawska, M. Roca-Sogorb, K. Stasiewicz, A.W. Wernik, Anisotropic scaling features and complexity in magnetospheric-cusp: a case study. Nonlinear Proc. Geophys. 12, 817–825 (2005)

    Article  ADS  Google Scholar 

  • E. Yordanova, A. Vaivads, M. André, S.C. Buchert, Z. Vörös, Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the cluster spacecraft. Phys. Rev. Lett. 100, 205003 (2008)

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, E.E. Grigorenko, A.O. Fedorov, Spatial-temporal ion structures in the Earth’s magnetotail: beamlets as a result of nonadiabatic impulse acceleration of the plasma. JETP Lett. 80, 663–673 (2004)

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, E.E. Grigorenko, J.-A. Sauvaud, R. Maggiolo, Multiplet structure of acceleration processes in the distant magnetotail. Geophys. Res. Lett. 33, L06105 (2006)

    Article  Google Scholar 

  • G. Zimbardo, P. Veltri, Spreading and intermittent structure of the upstream boundary of planetary magnetic foreshocks. Geophys. Res. Lett. 23, 793–796 (1996)

    Article  ADS  Google Scholar 

  • G. Zimbardo, A. Greco, P. Veltri, Superballistic transport in tearing driven magnetic turbulence. Phys. Plasmas 7, 1071 (2000a)

    Article  ADS  Google Scholar 

  • G. Zimbardo, P. Veltri, P. Pommois, Anomalous, quasilinear, and percolative regimes for magnetic-field-line transport in axially symmetric turbulence. Phys. Rev. E 61, 1940 (2000b)

    Article  ADS  Google Scholar 

  • G. Zimbardo, A. Greco, P. Veltri, A. Taktakishvili, L. Zelenyi, Double peak structure and diamagnetic wings of the magnetotail current sheet. Ann. Geophys. 22, 2541–2546 (2004a)

    Article  ADS  Google Scholar 

  • G. Zimbardo, P. Pommois, P. Veltri, Magnetic flux tube evolution in solar wind anisotropic magnetic turbulence. J. Geophys. Res. 109, A02113 (2004b)

    Article  Google Scholar 

  • G. Zimbardo, Anomalous particle diffusion and Levy random walk of magnetic field lines in three-dimensional solar wind turbulence. Plasma Phys. Control. Fusion 47, B755–B767 (2005)

    Article  Google Scholar 

  • G. Zimbardo, Magnetic turbulence in space plasmas: in and around the Earth’s magnetosphere. Plasma Phys. Control Fusion 48, B295–B302 (2006). doi:10.1088/0741-3335/48/12B/S28

    Article  Google Scholar 

  • G. Zimbardo, Heavy ion reflection and heating by collisionless shocks in polar solar corona. Planet. Space Sci. (2010). doi:10.1016/j.pss.2010.03.010

    Google Scholar 

  • G. Zimbardo, P. Pommois, P. Veltri, Superdiffusive and subdiffusive transport of energetic particles in solar wind anisotropic magnetic turbulence. Astrophys. J. Lett. 639, L91 (2006)

    Article  ADS  Google Scholar 

  • G. Zimbardo, P. Pommois, P. Veltri, Visualizing particle transport across magnetic flux tubes in anisotropic magnetic turbulence. IEEE Trans. Plasmas Sci. 36(4), 1114–1115 (2008). doi:10.1109/TPS.2004.924572

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zimbardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimbardo, G., Greco, A., Sorriso-Valvo, L. et al. Magnetic Turbulence in the Geospace Environment. Space Sci Rev 156, 89–134 (2010). https://doi.org/10.1007/s11214-010-9692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9692-5

Keywords