Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finitary Extensions of the Nilpotent Minimum Logic and (Almost) Structural Completeness

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In this paper we study finitary extensions of the nilpotent minimum logic (NML) or equivalently quasivarieties of NM-algebras. We first study structural completeness of NML, we prove that NML is hereditarily almost structurally complete and moreover NM\(^{-}\), the axiomatic extension of NML given by the axiom \(\lnot (\lnot \varphi ^{2})^{2}\leftrightarrow (\lnot (\lnot \varphi )^{2})^{2}\), is hereditarily structurally complete. We use those results to obtain the full description of the lattice of all quasivarieties of NM-algebras which allow us to characterize and axiomatize all finitary extensions of NML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguzzoli, S., M. Busaniche, and V. Marra, Spectral duality for finitely generated nilpotent minimum algebras with application, Journal of Logic and Computation 17: 749–765, 2007.

    Article  Google Scholar 

  2. Bergman, C., Structural completeness in algebra and logic, In: Algebraic Logic, volume 54 of Colloq. Math. Soc. János Bolyai North Holland, Amsterdam, 1991, pp. 59–73.

  3. Blok, W., and D. Pigozzi, Algebraizable logics, Mem. Amer. Math. Soc. vol.77, n.396. Providence, 1989.

  4. Burris, S., and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, 1981.

  5. Busaniche, M., Free nilpotent minimum algebras, Mathematical Logic Quarterly 52: 219–236, 2006.

    Article  Google Scholar 

  6. Cabrer, L., and G. Metcalfe, Admissibility via natural dualities, Journal of Pure and Applied Algebra 219: 4229–4253, 2015.

    Article  Google Scholar 

  7. Cignoli, R., and A. Torrens, Free algebras in varieties of Glivenko MTL-algebras satisfying the equation \(2(x^{2})=(2x)^{2}\), Studia Logica 83: 157–181, 2006.

    Article  Google Scholar 

  8. Cintula, P., and G. Metcalfe, Structural completeness in fuzzy logics, Notre Dame Journal of Formal Logic 50: 153–182, 2009.

    Article  Google Scholar 

  9. Dzik, W., Remarks on projective unifiers, Bulletin of the section of Logic 40: 37–46, 2011.

    Google Scholar 

  10. Dzik, W., and A. Stronkowski, Almost structural completeness; an algebraic approach, Annals of Pure and Applied Logic 167: 525–556, 2016.

    Article  Google Scholar 

  11. Dzik, W., and A. Wronski, Structural completeness of Gödel’s and Dummett’s propositional calculi, Studia Logica 32: 69–73, 1973.

    Article  Google Scholar 

  12. Esteva, F., and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems 124: 271-288, 2001.

    Article  Google Scholar 

  13. Fodor, J., Nilpotent minimum and related connectives for fuzzy logic, Proc. FUZZ-IEEE’95, 1995, pp. 2077–2082.

  14. Gispert, J., Axiomatic extensions of the nilpotent minimum logic, Reports on Mathematical Logic 37: 113–123, 2003.

    Google Scholar 

  15. Gratzer, G., Universal Algebra. Springer-Verlag, Berlin, 1979.

    Google Scholar 

  16. Jerabek, E., Admissible rules of Łukasiewicz logic, Journal of Logic and Computation 20: 425–447, 2010.

    Article  Google Scholar 

  17. Höhle, U., Commutative residuated l-monoids, in U. Höhle, and E. P. Klement (eds.), Non-classical logics and their applications to fuzzy subsets. A handbook of the Mathematical foundations of Fuzzy set theory. Kluwer, Dordrecht, 1995, pp. 53–106.

    Chapter  Google Scholar 

  18. Lorenzen, P., Einfürung in die operative Logik und Mathematik. Springer. Grundlehren der mathematischen Wissenschaften, vol 78, 1955.

  19. Metcalfe, G., An Avron rule for fragments of R-mingle, Journal of Logic and Computation 26(1): 381–393, 2016.

    Article  Google Scholar 

  20. Metcalfe, G., and C. Röthlisberger, Admissibility in finitely generated quasivarieties, Logical Methods in Computer Science 9: 1–19, 2013.

    Article  Google Scholar 

  21. Noguera, C., and F. Esteva, and J. Gispert, On triangular norm based axiomatic extensions of the weak nilpotent minimum logic, Mathematical Logic Quarterly 54: 403–425, 2008.

    Article  Google Scholar 

  22. Olson, J.S., J.G. Raftery, and C.J. Van Alten, Structural completeness in substructural logics, Journal of IGPL 16: 453–498, 2008.

    Article  Google Scholar 

  23. Rybakov, V.V., Admissibility of logical Inference Rules in Studies in logic and the foundations of Mathematics vol 36. Elsevier, Amsterdam, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Gispert.

Additional information

Presented by Daniele Mundici

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gispert, J. Finitary Extensions of the Nilpotent Minimum Logic and (Almost) Structural Completeness. Stud Logica 106, 789–808 (2018). https://doi.org/10.1007/s11225-017-9766-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-017-9766-4

Keywords