Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adhesive Contact of Model Randomly Rough Rubber Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We study experimentally and theoretically the equilibrium adhesive contact between a smooth glass lens and a rough rubber surface textured with spherical microasperities with controlled height and spatial distributions. Measurements of the real contact area A versus load P are performed under compression by imaging the light transmitted at the microcontacts. A(P) is found to be non-linear and to strongly depend on the standard deviation of the asperity height distribution. Experimental results are discussed in the light of a discrete version of Fuller and Tabor’s (FT) original model (Proc R Soc A 345:327, 1975), which allows to take into account the elastic coupling arising from both microasperities interactions and curvature of the glass lens. Our experimental data on microcontact size distributions are well captured by our discrete extended model. We show that the elastic coupling arising from the lens curvature has a significant contribution to the A(P) relationship. Our discrete model also clearly shows that the adhesion-induced effect on A remains significant even for vanishingly small pull-off forces. Last, at the local asperity length scale, our measurements show that the pressure dependence of the microcontacts density can be simply described by the original FT model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1958)

    Google Scholar 

  2. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    Article  CAS  Google Scholar 

  3. Fuller, K.N., Tabor, D.: The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. A 345, 327–342 (1975)

    Article  Google Scholar 

  4. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A. 295(1442), 300–319 (1966)

    Article  CAS  Google Scholar 

  5. Romero, V., Wandersman, E., Debrégeas, G., Prevost, A.: Probing locally the onset of slippage at a model multi-contact interface. Phys. Rev. Lett. 112, 094301 (2014)

    Article  CAS  Google Scholar 

  6. Yashima, S., Romero, V., Wandersman, E., Frétigny, C., Chaudhury, M.K., Chateauminois, A., Prévost, A.M.: Normal contact and friction of rubber with model randomly rough surfaces. Soft Matter 11, 871–881 (2015)

    Article  CAS  Google Scholar 

  7. Verneuil, E., Ladoux, B., Buguin, A., Silberzan, P.: Adhesion on microstructured surfaces. J. Adhes. 83, 449–472 (2007)

    Article  CAS  Google Scholar 

  8. Palchesko, R.N., Zhang, L., Sun, Y., Feinberg, A.W.: Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE 7(12), e51499 (2012)

    Article  CAS  Google Scholar 

  9. Piccardo, M., Chateauminois, A., Frétigny, C., Pugno, N.M., Sitti, M.: Contact compliance effects in the frictional response of bioinspired fibrillar adhesives. J. R. Soc. Interface 10, 20130182 (2013)

    Article  Google Scholar 

  10. Deruelle, M., Hervet, H., Jandeau, G., Léger, L.: Some remarks on JKR experiments. J. Adhes. Sci. Technol. 12(2), 225–247 (1998)

    Article  CAS  Google Scholar 

  11. Maugis, D., Barquins, M.: Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D 11, 1989–2023 (1978)

    Article  Google Scholar 

  12. Ciavarella, M., Greenwood, J.A., Paggi, M.: Inclusion of “interaction” in the Greenwood and Williamson contact theory. Wear 265, 729–734 (2008)

    Article  CAS  Google Scholar 

  13. Barquins, M., Maugis, D.: Cinétique de propagation de fissure et adhérence de solides viscoélastiques. C. R. l’Acad. Sci. Paris B 285, 125–128 (1977)

    Google Scholar 

  14. Barthel, E., Frétigny, C.: Adhesive contact of elastomers: effective adhesion energy and creep function. J. Phys. D 42, 195302 (2009)

    Article  Google Scholar 

  15. Hourlier-Fargette, A., Antkowiak, A., Chateauminois, A., Neukirch, S.: Role of uncrosslinked chains in droplets dynamics on silicone elastomers. Soft Matter 13, 3484–3491 (2017)

    Article  CAS  Google Scholar 

  16. Amouroux, N., Léger, L.: Effect of dangling chains on adhesion hysteresis of silicone elastomers, probed by JKR test. Langmuir 19, 1396–1401 (2003)

    Article  CAS  Google Scholar 

  17. Persson, B.N.J., Sivebaek, I.M., Samoilov, V.N., Zhao, K., Volokitin, A.I., Zhang, Z.: On the origin of Amonton’s friction law. Condensed Matter 20, 395006 (2008)

    Article  Google Scholar 

  18. Degrandi-Contraires, E., Beaumont, A., Restagno, F., Weil, R., Poulard, C., Léger, L.: Cassie-Wenzel-like transition in patterned soft elastomer adhesive contacts. Eur. Phys. Lett. 101, 14001 (2013)

    Article  Google Scholar 

  19. Greenwood, J.A., Tripp, J.H.L.: The elastic contact of rough spheres. J. Appl. Mech. 34, 153 (1967)

    Article  Google Scholar 

  20. Greenwood, J.A.: Reflexions and extensions of the Fuller and Tabor theory of rough surface adhesion. Tribol. Lett. 65, 159 (2017)

    Article  Google Scholar 

  21. Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Guido Violano for his kind help in the obtention of some of the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Chateauminois.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 164 kb)

Appendix 1: FT model

Appendix 1: FT model

In FT’s model, the summits of the spherical asperities have a Gaussian height distribution given by \(\phi (z)=\frac{1}{\sigma \sqrt{2\pi }}\exp (-z^{2}/2\sigma ^{2}).\) We consider here non-dimensional heights \(\zeta \equiv z/\sigma\) so that the height distribution becomes \(\phi (z)=\frac{1}{ \sqrt{2\pi }}\exp (-\zeta ^{2}/2).\) We follow the normalization suggested by Greenwood [20] and define the normalized load \({\overline{P}},\) indentation depth \({\overline{\delta }}\) and contact radius \({\overline{a}}\) as

$${\overline{P}}=\frac{P}{Rw};\quad {\overline{\delta }}=\beta \frac{\delta }{R};\quad {\overline{a}}= \beta \frac{a}{R}$$
(5)

with

$$\beta \equiv \left( \frac{E^{*}\,R}{w}\right) ^{1/3}.$$
(6)

Using this normalization, JKR equations now write

$${\overline{\delta }}={\overline{a}}^{2}-\sqrt{2\pi {\overline{a}}};\quad {\overline{P}}= 4/3 {\overline{a}}^{3} - \sqrt{8\pi {\overline{a}}^{3}}$$
(7)

during loading. Assuming that the asperities do not jump into contact, the average load can be expressed as a function of the normalized mean plane separation \(h \equiv d/\sigma\) as

$${\overline{P}}(h)=\frac{N Z}{\sqrt{2\pi }} \int _{0}^{\infty } f({\overline{\delta }}) \exp \left[ -(h+Z{\overline{\delta }})^{2}/2\right] {\text {d}}{\overline{\delta }},$$
(8)

where \(Z \equiv (Rw^{2}/E^{*2}\sigma ^{3})^{1/3}=4/3\pi ^{2/3}\theta _{\text {FT}}\) is FT’s adhesion parameter without the numerical factor \((3/4)/\pi ^{2/3}.\) As detailed in Appendix 2 of [20], the above expression can be turned to an explicit integral which can readily be evaluated numerically. Similarly, one can write the microcontact density \(\eta\) as

$$\eta (h)=\eta _{0} \int _h^{\infty } \phi (\zeta ){\text {d}}\zeta =-\eta _{0}/2 [{\text {erf}}(h/\sqrt{(}2) )-1],$$
(9)

where \(\eta _{0}\) is the microasperity density.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acito, V., Ciavarella, M., Prevost, A.M. et al. Adhesive Contact of Model Randomly Rough Rubber Surfaces. Tribol Lett 67, 54 (2019). https://doi.org/10.1007/s11249-019-1164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1164-9

Keywords