Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Spatial-temporal meta-path guided explainable crime prediction

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Exposure to crime and violence can harm individuals’ quality of life and the economic growth of communities. In light of the rapid development in machine learning, there is a rise in the need to explore automated solutions to crime prevention. The increasing availability of both fine-grained urban and public service data has driven a recent surge in fusing such cross-domain information to facilitate crime prediction. By capturing the information about social structure, environment, and crime trends, existing machine learning predictive models have explored the dynamic crime patterns from different views. However, these approaches mostly convert such multi-source knowledge into implicit and latent representations (e.g., learned embeddings of districts), making it still a challenge to investigate the impacts of explicit factors for the occurrences of crimes behind the scenes. In this paper, we present a Spatial-Temporal Meta-path guided Explainable Crime prediction (STMEC) framework to capture dynamic patterns of crime behaviours and explicitly characterize how the environmental and social factors mutually interact to produce the forecasts. Extensive experiments show the superiority of STMEC compared with other advanced spatial-temporal models, especially in predicting felonies (e.g., robberies and assaults with dangerous weapons).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

All datasets used for supporting the conclusions of this article are available from the public data repository at the website of data.cityofnewyork.us and www.kaggle.com.

References

  1. G.B.D. 2017 Causes of Death Collaborators: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the global burden of disease study 2017. Lancet 392 (10159), 1736–1788 (2018). https://doi.org/10.1016/S0140-6736(18)32203-7

    Article  Google Scholar 

  2. Russell, S.: Estimating the costs of serious and organised crime in Australia 2016–17 Statistical Report 9, Australian Institute of Criminology, Canberra (2018)

  3. de Melo, S.N., Pereira, D.V.S., Andresen, M.A.: Spatial-temporal variations of crime: A routine activity theory perspective. Int. J. Offender Ther. Comp. Criminol. 62(7), 1967–1991 (2017). https://doi.org/10.1177/0306624X17703654

    Article  Google Scholar 

  4. Li, Z., Zhang, T., Yuan, Z., Wu, Z., Du, Z.: Spatio-temporal pattern analysis and prediction for urban crime. In: 2018 6th International Conference on Advanced Cloud and Big Data (CBD), pp 177–182 (2018). https://doi.org/10.1109/CBD.2018.00040

  5. Nafi’iyah, N., Mauladi, K.F.: Linear regression analysis and SVR in predicting motor vehicle theft. In: 2021 International Seminar on Application for Technology of Information and Communication (iSemantic), pp 54–58 (2021). https://doi.org/10.1109/iSemantic52711.2021.9573225

  6. Zhao, X., Tang, J.: Modeling temporal-spatial correlations for crime prediction. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. CIKM ’17, pp 497–506 (2017). https://doi.org/10.1145/3132847.3133024

  7. Yi, F., Yu, Z., Zhuang, F., Zhang, X., Xiong, H.: An integrated model for crime prediction using temporal and spatial factors. In: 2018 IEEE International Conference on Data Mining (ICDM), pp 1386–1391 (2018). https://doi.org/10.1109/ICDM.2018.00190

  8. Huang, C., Zhang, J., Zheng, Y., Chawla, N.V.: DeepCrime: Attentive hierarchical recurrent networks for crime prediction. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. CIKM ’18, pp 1423–1432 (2018). https://doi.org/10.1145/3269206.3271793

  9. Huang, C., Zhang, C., Zhao, J., Wu, X., Yin, D., Chawla, N.: Mist: A multiview and multimodal spatial-temporal learning framework for citywide abnormal event forecasting. In: The World Wide Web Conference. WWW ’19, pp 717–728 (2019). https://doi.org/10.1145/3308558.3313730

  10. Snaphaan, T., Hardyns, W.: Environmental criminology in the big data era. Eur. J. Criminol. 18(5), 713–734 (2021). https://doi.org/10.1177/1477370819877753

    Article  Google Scholar 

  11. Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ’20, pp 1503–1511 (2020). https://doi.org/10.1145/3394486.3403201

  12. Wang, Y., Ge, L., Li, S., Chang, F.: Deep temporal multi-graph convolutional network for crime prediction. In: Conceptual Modeling - 39th International Conference. ER 2020, pp 525–538 (2020). https://doi.org/10.1007/978-3-030-62522-1_39

  13. Lin, Y., Yen, M., Yu, L.: Grid-based crime prediction using geographical features. ISPRS Int. J. Geo-Inf. 7(8:298). https://doi.org/10.3390/ijgi7080298 (2018)

  14. Weatherburn, D.: What causes crime. Crime and Justice Bulletin (2001)

  15. Glaeser, E.L., Sacerdote, B.: Why is there more crime in cities? J. Polit. Econ. 107(S6), 225–258 (1999). https://doi.org/10.1086/250109

    Article  Google Scholar 

  16. Bappee, F.K., Petry, L.M., Soares, A., Matwin, S.: Analyzing the impact of foursquare and streetlight data with human demographics on future crime prediction. In: Advances in Data Science and Information Engineering. ICMI ’14, pp 435–449 (2021). https://doi.org/10.1007/978-3-030-71704-9_29

  17. Almanie, T., Mirza, R., Lor, E.: Crime prediction based on crime types and using spatial and temporal criminal hotspots. Int. J. Data Min. Knowl. Manag. Process (IJDKP) 5(4). https://doi.org/10.5121/ijdkp.2015.5401 (2015)

  18. Alves, L.G.A., Ribeiro, H.V., Rodrigues, F.A.: Crime prediction through urban metrics and statistical learning. Phys. A: Stat. Mech. Appl. 505, 435–443 (2018). https://doi.org/10.1016/j.physa.2018.03.084

    Article  Google Scholar 

  19. Saltos, G., Coceas, M.: An exploration of crime prediction using data mining on open data. Int. J . Inf. Technol. Decis. Making 16(5), 1155–1181 (2017). https://doi.org/10.1142/S0219622017500250

    Article  Google Scholar 

  20. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endowment 4(11), 992–1003 (2011). https://doi.org/10.14778/3402707.3402736

    Article  Google Scholar 

  21. Hussein, R., Yang, D., Cudré-Mauroux, P.: Are meta-paths necessary? Revisiting heterogeneous graph embeddings. In: 437–446. https://doi.org/10.1145/3269206.3271777 (2018)

  22. Chen, T., Yin, H., Ren, J., Huang, Z., Zhang, X., Wang, H.: Uniting heterogeneity, inductiveness, and efficiency for graph representation learning. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2021.3100529 (2021)

  23. Wang, B., Lin, Y., Guo, S., Wan, H.: Gsnet: Learning spatial-temporal correlations from geographical and semantic aspects for traffic accident risk forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp 4402–4409 (2021)

  24. Gers, F.A., Eck, D., Schmidhuber, J.: Applying LSTM to time series predictable through time-window approaches. In: Proceedings of the 12th Italian Workshop on Neural Nets. Neural Nets WIRN Vietri-01, pp 193–200 (2002). https://doi.org/10.1007/978-1-4471-0219-9_20

  25. Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F., Pentland, A.: Once upon a crime: Towards crime prediction from demographics and mobile data. In: Proceedings of the 16th International Conference on Multimodal Interactions. ICMI ’14, pp 427–434 (2014). https://doi.org/10.1145/2663204.2663254

  26. Dong, Y., Chawla, N.V., Swami, A.: Metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’17, pp 135–144 (2017). https://doi.org/10.1145/3097983.3098036

  27. Shi, C., Hu, B., Zhao, W.X., Yu, P.S.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2019). https://doi.org/10.1109/TKDE.2018.2833443

    Article  Google Scholar 

  28. Fu, X., Zhang, J., Meng, Z., King, I.: Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of The Web Conference 2020. WWW ’20, pp 2331–2341 (2020). https://doi.org/10.1145/3366423.3380297

  29. Li, Y., Jin, Y., Song, G., Zhu, Z., Shi, C., Wang, Y.: GraphMSE: Efficient meta-path selection in semantically aligned feature space for graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence 2021. AAAI ’21, pp 4206–4214 (2021)

  30. Chen, H., Yin, H., Chen, T., Nguyen, Q.V.H., Peng, W.-C., Li, X.: Exploiting centrality information with graph convolutions for network representation learning. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp 590–601 (2019). https://doi.org/10.1109/ICDE.2019.00059

  31. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: The 3rd International Conference for Learning Representations. ICLR ’15 (2015)

  32. MuonNeutrino: Demographic, economic, and location data for census tracts in nyc. Kaggle (2017)

  33. Department of Information Technology and Telecommunications (DOITT): Points of interest. NYC Open Data (2016)

  34. Police Department (NYPD): Nypd complaint data historic. NYC Open Data (2016)

  35. Green, B., Horel, T., Papachristos, A.V.: Modeling contagion through social networks to explain and predict gunshot violence in Chicago, 2006 to 2014. JAMA Internal Med. 177(3), 326–333 (2017). https://doi.org/10.1001/jamainternmed.2016.8245

    Article  Google Scholar 

  36. Huang, C., Wu, X., Zhang, X., Zhang, C., Zhao, J., Yin, D., Chawla, N.V.: Online purchase prediction via multi-scale modeling of behavior dynamics. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ’19, pp 2613–2622 (2019). https://doi.org/10.1145/3292500.3330790

  37. Munnelly, G., Lawless, S.: Investigating entity linking in early english legal documents. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries. JCDL ’18, pp 59–68 (2018). https://doi.org/10.1145/3197026.3197055

  38. Jin, G., Wang, Q., Zhu, C., Feng, Y., Huang, J., Zhou, J.: Addressing crime situation forecasting task with temporal graph convolutional neural network approach. In: 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). KDD ’19, pp 474–478 (2020). https://doi.org/10.1109/ICMTMA50254.2020.00108

  39. Han, X., Hu, X., Wu, H., Shen, B., Wu, J.: Risk prediction of theft crimes in urban communities: An integrated model of LSTM and ST-GCN. IEEE Access 8, 217222–217230 (2020). https://doi.org/10.1109/ACCESS.2020.3041924

    Article  Google Scholar 

  40. Liang, W., Wang, Y., Tao, H., Cao, J.: Towards hour-level crime prediction: A neural attentive framework with spatial–temporal-categorical fusion. Neurocomputing. https://doi.org/10.1016/j.neucom.2021.11.052 (2021)

  41. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: The 5th International Conference on Learning Representations. ICLR 2017 (2017)

  42. Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., Li, H.: T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2020). https://doi.org/10.1109/TITS.2019.2935152

    Article  Google Scholar 

  43. Deng, S., Rangwala, H., Ning, Y.: Learning dynamic context graphs for predicting social events. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ’19, pp 1007–1016 (2019). https://doi.org/10.1145/3292500.3330919

  44. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp 3634–3640 (2018). IJCAI-18. https://doi.org/10.5555/3304222.3304273

  45. Wang, C., Lin, Z., Yang, X., Sun, J., Yue, M., Shahabi, C.: Hagen: Homophily-aware graph convolutional recurrent network for crime forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 4193–4200 (2022)

  46. Song, G., Bernasco, W., Liu, L., Xiao, L., Zhou, S., Liao, W.: Crime feeds on legal activities: Daily mobility flows help to explain thieves’ target location choices. J. Quant. Criminol. 35(26), 831–854 (2019). https://doi.org/10.1007/s10940-019-09406-z

    Article  Google Scholar 

  47. Rumi, S.K., Deng, K., Salim, F.D.: Theft prediction with individual risk factor of visitors. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp 552–555 (2018). SIGSPATIAL ’18. https://doi.org/10.1145/3274895.3274994

  48. Rumi, S.K., Salim, F.D.: Modelling regional crime risk using directed graph of check-ins. In: 2201–2204. https://doi.org/10.1145/3340531.3412065 (2020)

  49. Kadar, C., Pletikosa, I.: Mining large-scale human mobility data for long-term crime prediction. EPJ Data Sci. 7(26). https://doi.org/10.1140/epjds/s13688-018-0150-z(2018)

  50. Rosés, R., Kadar, C., Malleson, N.: A data-driven agent-based simulation to predict crime patterns in an urban environment. Comput. Environ. Urban Syst. 89(101660). https://doi.org/10.1016/j.compenvurbsys.2021.101660 (2021)

  51. Wang, Z., Jiang, R., Cai, Z., Fan, Z., Liu, X., Kim, K.-S., Song, X., Shibasaki, R.: Spatio-temporal-categorical graph neural networks for fine-grained multi-incident co-prediction. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management. CIKM ’21, pp 2060–2069 (2021). https://doi.org/10.1145/3459637.3482482

  52. Park, S., Serrà, J., Martinez, E.F., Oliver, N.: Mobinsight: A framework using semantic neighborhood features for localized interpretations of urban mobility. ACM Trans. Interact. Intell. Syst. 8(3). https://doi.org/10.1145/3158433 (2018)

  53. Fengli Xu, Z.L., Xia, T., Guo, D., Li, Y.: Sume: Semantic-enhanced urban mobility network embedding for user demographic inference. Proc. ACM. Interact. Mob. Wearable Ubiquit. Technol. 4(3), 1–25 (2020). https://doi.org/10.1145/3411807

    Article  Google Scholar 

  54. Yang, D., Qu, B., Yang, J., Cudré-Mauroux, P.: LBSN2VEC++: Heterogeneous hypergraph embedding for location-based social networks. IEEE Trans. Knowl. Data Eng. 34, 1843–1855 (2020). https://doi.org/10.1109/TKDE.2020.2997869

    Article  Google Scholar 

  55. Huang, Y., Bi, H., Li, Z., Mao, T., Wang, Z.: STGAT: Modeling spatial-temporal interactions for human trajectory prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV ’19, pp 6272–6281 (2019). https://doi.org/10.1109/ICCV.2019.00637

  56. Wang, S., Miao, H., Chen, H., Huang, Z.: Multi-task adversarial spatial-temporal networks for crowd flow prediction. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp 1555–1564 (2020). CIKM ’20. https://doi.org/10.1145/3340531.3412054

  57. Chen, T., Yin, H., Chen, H., Wu, L., Wang, H., Zhou, X., Li, X.: Tada: trend alignment with dual-attention multi-task recurrent neural networks for sales prediction. In: 2018 IEEE International Conference on Data Mining (ICDM), pp 49–58. IEEE (2018)

  58. Chen, T., Yin, H., Nguyen, Q.V.H., Peng, W.-C., Li, X., Zhou, X.: Sequence-aware factorization machines for temporal predictive analytics. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp 1405–1416. IEEE (2020)

  59. Tam, N.T., Weidlich, M., Zheng, B., Yin, H., Hung, N.Q.V., Stantic, B.: From anomaly detection to rumour detection using data streams of social platforms. Proc. VLDB Endowment 12(9), 1016–1029 (2019)

    Article  Google Scholar 

  60. Trung, H.T., Van Vinh, T., Tam, N.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp 85–96. IEEE (2020)

  61. Yao, H., Liu, Y., Wei, Y., Tang, X., Li, Z.: Learning from multiple cities: A meta-learning approach for spatial-temporal prediction. In: The World Wide Web Conference. WWW ’19, pp 2181–2191 (2019). https://doi.org/10.1145/3308558.3313577

  62. Wang, H., Kifer, D., Graif, C., Li, Z.: Crime rate inference with big data. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 635–644 (2016). https://doi.org/10.1145/2939672.2939736

  63. Wang, T., Rudin, C., Wagner, D., Sevieri, R.: Learning to detect patterns of crime. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML), pp 515–530 (2013). https://doi.org/10.1007/978-3-642-40994-3_33

  64. Yang, D., Heaney, T., Tonon, A., Wang, L., Cudré-Mauroux, P.: Crimetelescope: crime hotspot prediction based on urban and social media data fusion. World Wide Web 21(5), 1323–1347 (2018). https://doi.org/10.1007/s11280-017-0515-4

    Article  Google Scholar 

  65. Zhao, X., Fan, W., Liu, H., Tang, J.: Multi-type urban crime prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

Download references

Acknowledgements

We gratefully thank Dr. Thomas Taimre (the University of Queensland) and Dr. Radislav Vaisman (the University of Queensland) for valuable discussions on this research and helpful comments on the manuscript. This work is supported by Australian Research Council Future Fellowship (Grant No. FT210100624) and Discovery Project (Grant No.DP190101985).

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Yuting Sun implemented the methodology, performed data curation, wrote the original draft, and conducted the experiment. Tong Chen proposed the conceptualization and methodology, prepared the figures, and performed review and editing. Hongzhi Yin proposed the research problem and methodology, supervised the whole research work, wrote the introduction and abstract parts, and performed review and editing.

Corresponding author

Correspondence to Hongzhi Yin.

Ethics declarations

Ethics approval and consent to participate

This work has been reviewed by the Research Ethics and Integrity and is deemed to be exempt from ethics review under the National Statement on Ethical Conduct in Human Research and relevant University of Queensland policy (PPL 4.20.07).

Competing interests

All authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Human and Animal Ethics

This article does not contain any experimentation with human or animal subjects.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chen, T. & Yin, H. Spatial-temporal meta-path guided explainable crime prediction. World Wide Web 26, 2237–2263 (2023). https://doi.org/10.1007/s11280-023-01137-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-023-01137-3

Keywords