Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semiparametric Bayesian inference for accelerated failure time models with errors-in-covariates and doubly censored data

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper proposes a Bayesian semiparametric accelerated failure time model for doubly censored data with errors-in-covariates. The authors model the distributions of the unobserved covariates and the regression errors via the Dirichlet processes. Moreover, the authors extend the Bayesian Lasso approach to our semiparametric model for variable selection. The authors develop the Markov chain Monte Carlo strategies for posterior calculation. Simulation studies are conducted to show the performance of the proposed method. The authors also demonstrate the implementation of the method using analysis of PBC data and ACTG 175 data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckley J and James I, Linear regression with censored data, Biometrika, 1979, 66(3): 429–436.

    Article  MATH  Google Scholar 

  2. Koul H, Susarla V, and Van Ryzin J, Regression analysis with randomly right-censored data, The Annals of Statistics, 1981, 9(6): 1276–1288.

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang C H and Li X, Linear regression with doubly censored data, The Annals of Statistics, 1996, 24(6): 2720–2743.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ren J J, Regression M-estimators with non-iid doubly censored data, The Annals of Statistics, 2003, 31(4): 1186–1219.

    Article  MathSciNet  MATH  Google Scholar 

  5. Stefanski L A and Carroll R J, Conditional scores and optimal scores for generalized linear measurement-error models, Biometrika, 1987, 74(4): 703–716.

    MathSciNet  MATH  Google Scholar 

  6. Rosner B, Willett W C, and Spiegelman D, Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error, Statistics in Medicine, 1989, 8(9): 1051–1069.

    Article  Google Scholar 

  7. Rosner B, Spiegelman D, and Willett W C, Correction of logistic regression relative risk estimates and confidence intervals for measurement error: The case of multiple covariates measured with error, American Journal of Epidemiology, 1990, 132(4): 734–745.

    Article  Google Scholar 

  8. Nakamura T, Corrected score function for errors-in-variables models: Methodology and application to generalized linear models, Biometrika, 1990, 77(1): 127–137.

    Article  MathSciNet  MATH  Google Scholar 

  9. Cook J R and Stefanski L A, Simulation-extrapolation estimation in parametric measurement error models, Journal of the American Statistical Association, 1994, 89(428): 1314–1328.

    Article  MATH  Google Scholar 

  10. Giménez P, Bolfarine H, and Colosimo E A, Estimation in Weibull regression model with measurement error, Communications in Statistics-Theory and Methods, 1999, 28(2): 495–510.

    Article  MATH  Google Scholar 

  11. He W, Yi G Y, and Xiong J, Accelerated failure time models with covariates subject to measurement error, Statistics in Medicine, 2007, 26(26): 4817–4832.

    Article  MathSciNet  Google Scholar 

  12. Zhang J, He W, and Li H, A semiparametric approach for accelerated failure time models with covariates subject to measurement error, Communications in Statistics-Simulation and Computation, 2014, 43(2): 329–341.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferguson T S, A Bayesian analysis of some nonparametric problems, The Annals of Statistics, 1973, 1(2): 209–230.

    Article  MathSciNet  MATH  Google Scholar 

  14. Antoniak C E, Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, The Annals of Statistics, 1974, 2(6): 1152–1174.

    Article  MathSciNet  MATH  Google Scholar 

  15. Tanner M A and Wong W H, The calculation of posterior distributions by data augmentation, Journal of the American statistical Association, 1987, 82(398): 528–540.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin X, A Bayesian semiparametric accelerated failure time model for arbitrarily censored data with covariates subject to measurement error, Communications in Statistics-Simulation and Computation, 2015, doi: 10.1080/03610918.2014.977919.

    Google Scholar 

  17. Xu J, Leng C, and Ying Z, Rank-based variable selection with censored data, Statistics and Computing, 2010, 20(2): 165–176.

    Article  MathSciNet  Google Scholar 

  18. Xiong J, Survival Analysis of Microarray Data With Microarray Measurement Subject to Measurement Error, PhD thesis, The University of Western Ontario, 2010.

    Google Scholar 

  19. Huang X and Zhang H, Variable selection in linear measurement error models via penalized score functions, Journal of Statistical Planning and Inference, 2013, 143(12): 2101–2111.

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang H and Li R, Variable selection for partially linear models with measurement errors, Journal of the American Statistical Association, 2009, 104(485): 234–248.

    Article  MathSciNet  MATH  Google Scholar 

  21. Tibshirani R, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1996, 58(1): 267–288.

    MathSciNet  MATH  Google Scholar 

  22. Bae K and Mallick B K, Gene selection using a two-level hierarchical Bayesian model, Bioinformatics, 2004, 20(18): 3423–3430.

    Article  Google Scholar 

  23. Figueiredo M A T, Adaptive sparseness for supervised learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1150–1159.

    Article  Google Scholar 

  24. Park T and Casella G, The Bayesian Lasso, Journal of the American Statistical Association, 2008, 103(482): 681–686.

    Article  MathSciNet  MATH  Google Scholar 

  25. Blackwell D and MacQueen J B, Ferguson distributions via Polya urn schemes, The Annals of Statistics, 1973, 1(2): 353–355.

    Article  MathSciNet  MATH  Google Scholar 

  26. Escobar M D, Estimating normal means with a Dirichlet process prior, Journal of the American Statistical Association, 1994, 89(425): 268–277.

    Article  MathSciNet  MATH  Google Scholar 

  27. Escobar M D and West M, Bayesian density estimation and inference using mixtures, Journal of the American Statistical Association, 1995, 90(430): 577–588.

    Article  MathSciNet  MATH  Google Scholar 

  28. MacEachern S N and Müller P, Estimating mixture of Dirichlet process models, Journal of Computational and Graphical Statistics, 1998, 7(2): 223–238.

    Google Scholar 

  29. Neal R M, Markov chain sampling methods for Dirichlet process mixture models, Journal of Computational and Graphical Statistics, 2000, 9(2): 249–265.

    MathSciNet  Google Scholar 

  30. West M, Hyperparameter estimation in Dirichlet process mixture models, Technical Report, Institute of Statistics and Decision Sciences, Duke University, 1992.

    Google Scholar 

  31. Li Q and Lin N, The Bayesian elastic net, Bayesian Analysis, 2010, 5(1): 151–170.

    Article  MathSciNet  MATH  Google Scholar 

  32. Carlin B P and Louis T A, Bayes and empirical Bayes methods for data analysis, Statistics and Computing, 1997, 7(2): 153–154.

    Article  Google Scholar 

  33. Therneau T M, Modeling Survival Data: Extending the Cox Model, Springer, 2000.

    Book  MATH  Google Scholar 

  34. Huang J, Ma S, and Xie H, Regularized estimation in the accelerated failure time model with high-dimensional covariates, Biometrics, 2006, 62(3): 813–820.

    Article  MathSciNet  MATH  Google Scholar 

  35. Geweke J, Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments, Federal Reserve Bank of Minneapolis, Research Department, 1991.

    Google Scholar 

  36. Hammer S M, Katzenstein D A, Hughes M D, et al., A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter, New England Journal of Medicine, 1996, 335(15): 1081–1090.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshan Shen.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11171007/A011103, 11171230, and 11471024.

This paper was recommended for publication by Editor LI Qizhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Li, Z., Yu, H. et al. Semiparametric Bayesian inference for accelerated failure time models with errors-in-covariates and doubly censored data. J Syst Sci Complex 30, 1189–1205 (2017). https://doi.org/10.1007/s11424-017-6010-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-017-6010-2

Keywords