Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An effective scheme for top-k frequent itemset mining under differential privacy conditions

  • Letter
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Garofalakis M, Gehrke J, Rastogi R. Querying and mining data streams: you only get one look a tutorial. In: Proceedings of ACM SIGMOD International Conference, Madison, 2002

    Google Scholar 

  2. Zeng C, Naughton J F, Cai J Y. On differentially private frequent itemset mining. Proc VLDB Endow, 2012, 6: 25–36

    Article  Google Scholar 

  3. Su S, Xu S Z, Cheng X, et al. Differentially private frequent itemset mining via transaction splitting. In: Proceedings of the 32nd IEEE International Conference on Data Engineering, Helsinki, 2016. 1564–1565

    Google Scholar 

  4. Wang N, Xiao X K, Yang Y, et al. PrivSuper: a superset-first approach to frequent itemset mining under differential privacy. In: Proceedings of the 33rd IEEE International Conference on Data Engineering, San Diego, 2017. 809–820

    Google Scholar 

  5. Dwork C, Mcsherry F, Nissim K, et al. Calibrating noise to sensitivity in private data analysis. In: Proceedings of Theory of Cryptography Conference, New York, 2006. 265–284

    Google Scholar 

  6. McSherry F, Talwar K. Mechanism design via differential privacy. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, Providence, 2007. 94–103

    Google Scholar 

  7. Efraimidis P S, Spirakis P G. Weighted random sampling with a reservoir. Inf Process Lett, 2006, 97: 181–185

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61- 532021, 61772537, 61772536, 61702522) and National Key R&D Program of China (Grant No. 2018YFB1004400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Chen, H., Zhang, J. et al. An effective scheme for top-k frequent itemset mining under differential privacy conditions. Sci. China Inf. Sci. 63, 159101 (2020). https://doi.org/10.1007/s11432-018-9849-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-018-9849-y