Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Secure transmission for heterogeneous cellular network with limited feedback

  • Research Paper
  • Special Focus on Challenges and New Insights for Network Security in 5G-and-Beyond
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We study physical layer secure transmission with limited feedback in heterogeneous cellular networks. A transmission protocol is designed to obtain more secure and accurate channel state information (CSI) for enhancing the secrecy performance. Under the proposed protocol, we derive expressions of coverage probability and secrecy outage probability to analyze the security performance with different system parameters such as feedback CSI length and number of antennas. Furthermore, an iteration algorithm is proposed to balance the tradeoff between the feedback and transmission time, and maximize the average secrecy throughput under coverage and secrecy outage constrains. Numeric results demonstrate the optimal feedback overhead and the maximum average secrecy throughput are influenced by the number of antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghosh A, Mangalvedhe N, Ratasuk R, et al. Heterogeneous cellular networks: from theory to practice. IEEE Commun Mag, 2012, 50: 54–64

    Article  Google Scholar 

  2. Wyner A D. The wire-tap channel. Bell Syst Tech J, 1975, 54: 1355–1387

    Article  MathSciNet  Google Scholar 

  3. Mukherjee A, Fakoorian S A, Huang J, et al. Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun Surv Tut, 2014, 16: 1550–1573

    Article  Google Scholar 

  4. Fan L S, Yang N, Duong T Q, et al. Exploiting direct links for physical layer security in multiuser multirelay networks. IEEE Trans Wirel Commun, 2016, 15: 3856–3867

    Article  Google Scholar 

  5. Chen X, Chen H H. Physical layer security in multi-cell MISO downlinks with incomplete CSI-A unified secrecy performance analysis. IEEE Trans Signal Process, 2014, 62: 6286–6297

    Article  MathSciNet  Google Scholar 

  6. Shin W, Vaezi M, Lee B, et al. Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Commun Mag, 2017, 55: 176–183

    Article  Google Scholar 

  7. Haenggi M, Andrews J G, Baccelli F, et al. Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J Sel Areas Commun, 2009, 27: 1029–1046

    Article  Google Scholar 

  8. Pinto P C, Barros J, Win M Z. Physical-layer security in stochastic wireless networks. In: Proceedings of the 11th IEEE Singapore International Conference on Communication Systems, 2008. 974–979

  9. Zheng T X, Wang H M, Yin Q. On transmission secrecy outage of a multi-antenna system with randomly located eavesdroppers. IEEE Commun Lett, 2014, 18: 1299–1302

    Article  Google Scholar 

  10. Ghogho M, Swami A. Physical-layer secrecy of MIMO communications in the presence of a Poisson random field of eavesdroppers. In: Proceedings of IEEE International Conference on Communications Workshops (ICC), 2011

  11. ElSawy H, Hossain E, Haenggi M. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun Surv Tut, 2013, 15: 996–1019

    Article  Google Scholar 

  12. Wang H, Zhou X Y, Reed M C. Physical layer security in cellular networks: a stochastic geometry approach. IEEE Trans Wirel Commun, 2013, 12: 2776–2787

    Article  Google Scholar 

  13. Zhong Z H, Peng J H, Luo W Y, et al. A tractable approach to analyzing the physical-layer security in K-tier heterogeneous cellular networks. China Commun, 2015, 12: 166–173

    Article  Google Scholar 

  14. Geraci G, Dhillon H S, Andrews J G, et al. Physical layer security in downlink multi-antenna cellular networks. IEEE Trans Commun, 2014, 62: 2006–2021

    Article  Google Scholar 

  15. Love D J, Heath R W, Santipach W, et al. What is the value of limited feedback for MIMO channels? IEEE Commun Mag, 2004, 42: 54–59

    Article  Google Scholar 

  16. Zhang X, Zhou X Y, McKay M R, et al. Artificial-noise-aided secure multi-antenna transmission in slow fading channels with limited feedback. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014. 3968–3972

  17. Zhang X, McKay M R, Zhou X Y, et al. Artificial-noise-aided secure multi-antenna transmission with limited feedback. IEEE Trans Wirel Commun, 2015, 14: 2742–2754

    Article  Google Scholar 

  18. Hu J W, Cai Y M, Yang N, et al. Artificial-noise-aided secure transmission scheme with limited training and feedback overhead. IEEE Trans Wirel Commun, 2017, 16: 193–205

    Article  Google Scholar 

  19. Wang H M, Wang C, Ng D W. Artificial noise assisted secure transmission under training and feedback. IEEE Trans Signal Process, 2015, 63: 6285–6298

    Article  MathSciNet  Google Scholar 

  20. Wang H M, Zheng T X, Yuan J, et al. Physical layer security in heterogeneous cellular networks. IEEE Trans Commun, 2016, 64: 1204–1219

    Article  Google Scholar 

  21. Santipach W, Honig M L. Capacity of a multiple-antenna fading channel with a quantized precoding matrix. IEEE Trans Inform Theory, 2009, 55: 1218–1234

    Article  MathSciNet  Google Scholar 

  22. Zhou S L, Wang Z D, Giannakis G B. Quantifying the power loss when transmit beamforming relies on finite-rate feedback. IEEE Trans Wirel Commun, 2005, 4: 1948–1957

    Article  Google Scholar 

  23. Li G Y, Sun C, Zhang J Q, et al. Physical layer key generation in 5G and beyond wireless communications: challenges and opportunities. Entropy, 2019, 21: 497

    Article  Google Scholar 

  24. Li G Y, Hu A Q, Sun C, et al. Constructing reciprocal channel coefficients for secret key generation in FDD systems. IEEE Commun Lett, 2018, 22: 2487–2490

    Article  Google Scholar 

  25. Gradtejn I S, Ryik I M, Jeffrey A. Table of Integrals, Series, and Products. Amsterdam: Elsevier, 1980

    Google Scholar 

  26. Xia P, Chandrasekhar V, Andrews J G. Open vs. closed access femtocells in the uplink. IEEE Trans Wirel Commun, 2010, 9: 3798–3809

    Article  Google Scholar 

  27. Qi X H, Huang K Z, Li B, et al. Physical layer security in multi-antenna cognitive heterogeneous cellular networks: a unified secrecy performance analysis. Sci China Inf Sci, 2018, 61: 022310

    Article  Google Scholar 

  28. Chu Z, Cumanan K, Ding Z G, et al. Secrecy rate optimizations for a MIMO secrecy channel with a cooperative jammer. IEEE Trans Veh Technol, 2015, 64: 1833–1847

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key Research and Development Program of China (Grant No. 2017YFB0801900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaizhi Huang.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Huang, K., Xiao, S. et al. Secure transmission for heterogeneous cellular network with limited feedback. Sci. China Inf. Sci. 63, 220304 (2020). https://doi.org/10.1007/s11432-019-2836-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2836-0

Keywords