Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modified Bogoliubov-de Gennes treatment for Majorana conductances in three-terminal transports

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We consider a two-lead (three-terminal) setup of non-local transport through Majorana zero modes (MZMs) and construct a Majorana master equation (which is also valid for small bias voltages). We first present representative results of current and then show that only a modified Bogoliubov-de Gennes (BdG) treatment can consistently recover the same results. Based on the interplay of the two approaches, we reveal the existence of non-vanishing channels of teleportation and crossed Andreev reflections even at the limit ϵM → 0 (zero coupling energy of the MZMs), which leads to new predictions for the height of the zero-bias-peak of the local conductance and the ϵM-scaling behavior of the teleportation conductance, for verification by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Y. Kitaev, Phys.-Usp. 44, 131 (2001), arXiv: cond-mat/0010440.

    Article  ADS  Google Scholar 

  2. A. Y. Kitaev, Ann. Phys. 303, 2 (2003).

  3. S. D. Sarma, M. Freedman, and C. Nayak, npj Quant. Inf. 1, 15001 (2015).

    Article  ADS  Google Scholar 

  4. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010), arXiv: 1002.4033.

    Article  ADS  Google Scholar 

  5. Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010), arXiv: 1003.1145.

    Article  ADS  Google Scholar 

  6. L. Fu, and C. L. Kane, Phys. Rev. B 79, 161408 (2009), arXiv: 0804.4469.

    Article  ADS  Google Scholar 

  7. J. Cayao, P. San-Jose, A. M. Black-Schaffer, R. Aguado, and E. Prada, Phys. Rev. B 96, 205425 (2017), arXiv: 1707.05117.

    Article  ADS  Google Scholar 

  8. J. Cayao, A. M. Black-Schaffer, E. Prada, and R. Aguado, Beilstein J. Nanotechnol. 9, 1339 (2018).

    Article  Google Scholar 

  9. J. Cayao, and A. M. Black-Schaffer, Eur. Phys. J. Spec. Top. 227, 1387 (2018), arXiv: 1806.09394.

    Article  Google Scholar 

  10. C. J. Bolech, and E. Demler, Phys. Rev. Lett. 98, 237002 (2007), arXiv: cond-mat/0607779.

    Article  ADS  Google Scholar 

  11. J. Nilsson, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev. Lett. 101, 120403 (2008), arXiv: 0806.4889.

    Article  ADS  Google Scholar 

  12. B. Zocher, and B. Rosenow, Phys. Rev. Lett. 111, 036802 (2013), arXiv: 1208.4092.

    Article  ADS  Google Scholar 

  13. H. F. Lü, H. Z. Lu, and S. Q. Shen, Phys. Rev. B 86, 075318 (2012), arXiv: 1208.3070.

    Article  ADS  Google Scholar 

  14. Y. Cao, P. Wang, G. Xiong, M. Gong, and X. Q. Li, Phys. Rev. B 86, 115311 (2012), arXiv: 1205.0322.

    Article  ADS  Google Scholar 

  15. K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001 (2009), arXiv: 0907.1909.

    Article  ADS  Google Scholar 

  16. M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C. W. J. Beenakker, New J. Phys. 13, 053016 (2011), arXiv: 1101.5795.

    Article  ADS  Google Scholar 

  17. K. Sengupta, I. Žutić, H. J. Kwon, V. M. Yakovenko, and S. Das Sarma, Phys. Rev. B 63, 144531 (2001), arXiv: cond-mat/0010206.

    Article  ADS  Google Scholar 

  18. K. Flensberg, Phys. Rev. B 82, 180516(R) (2010), arXiv: 1009.3533.

    Article  ADS  Google Scholar 

  19. E. B. Hansen, J. Danon, and K. Flensberg, Phys. Rev. B 93, 094501(R) (2016), arXiv: 1511.03877.

    Article  ADS  Google Scholar 

  20. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012), arXiv: 1204.2792.

    Article  ADS  Google Scholar 

  21. H. Zhang, D. E. Liu, M. Wimmer, and L. P. Kouwenhoven, Nat. Commun. 10, 5128 (2019), arXiv: 1905.07882.

    Article  ADS  Google Scholar 

  22. B. van Heck, R. M. Lutchyn, and L. I. Glazman, Phys. Rev. B 93, 235431 (2016), arXiv: 1603.08258.

    Article  ADS  Google Scholar 

  23. C. K. Chiu, J. D. Sau, and S. Das Sarma, Phys. Rev. B 96, 054504 (2017), arXiv: 1702.04357.

    Article  ADS  Google Scholar 

  24. S. Vaitiekėnas, M. T. Deng, J. Nygård, P. Krogstrup, and C. M. Marcus, Phys. Rev. Lett. 121, 037703 (2018), arXiv: 1710.04300.

    Article  ADS  Google Scholar 

  25. S. Vaitiekėnas, A. M. Whiticar, M. T. Deng, F. Krizek, J. E. Sestoft, C. J. Palmstrøm, S. Marti-Sanchez, J. Arbiol, P. Krogstrup, L. Casparis, and C. M. Marcus, Phys. Rev. Lett. 121, 147701 (2018).

    Article  ADS  Google Scholar 

  26. L. Hofstetter, S. Csonka, A. Baumgartner, G. Fülöp, S. d’Hollosy, J. Nyg, and C. Schönenberger, Phys. Rev. Lett. 107, 136801 (2011), arXiv: 1105.2583.

    Article  ADS  Google Scholar 

  27. J. Gramich, A. Baumgartner, and C. Schönenberger, Phys. Rev. B 96, 195418 (2017), arXiv: 1612.01201.

    Article  ADS  Google Scholar 

  28. E. B. Hansen, J. Danon, and K. Flensberg, Phys. Rev. B 97, 041411(R) (2018), arXiv: 1712.07972.

    Article  ADS  Google Scholar 

  29. J. Danon, A. B. Hellenes, E. B. Hansen, L. Casparis, A. P. Higgin-botham, and K. Flensberg, Phys. Rev. Lett. 124, 036801 (2020), arXiv: 1905.05438.

    Article  ADS  Google Scholar 

  30. G. C. Ménard, G. L. R. Anselmetti, E. A. Martinez, D. Puglia, F. K. Malinowski, J. S. Lee, S. Choi, M. Pendharkar, C. J. Palmstrøm, K. Flensberg, C. M. Marcus, L. Casparis, and A. P. Higginbotham, Phys. Rev. Lett. 124, 036802 (2020), arXiv: 1905.05505.

    Article  ADS  Google Scholar 

  31. C. X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B 96, 075161 (2017), arXiv: 1705.02035.

    Article  ADS  Google Scholar 

  32. E. Prada, R. Aguado, and P. San-Jose, Phys. Rev. B 96, 085418 (2017), arXiv: 1702.02525.

    Article  ADS  Google Scholar 

  33. O. A. Awoga, J. Cayao, and A. M. Black-Schaffer, Phys. Rev. Lett. 123, 117001 (2019), arXiv: 1904.03783.

    Article  ADS  Google Scholar 

  34. M. T. Deng, S. Vaitiėkenas, E. Prada, P. San-Jose, J. Nyg, P. Krogstrup, R. Aguado, and C. M. Marcus, Phys. Rev. B 98, 085125 (2018), arXiv: 1712.03536.

    Article  ADS  Google Scholar 

  35. E. Prada, P. San-Jose, M. W. A. de Moor, A. Geresdi, E. J. H. Lee, J. Klinovaja, D. Loss, J. Nygard, R. Aguado, and L. P. Kouwenhoven, arXiv: 1911.04512v2.

  36. J. Avila, F. Peñaranda, E. Prada, P. San-Jose, and R. Aguado, Commun. Phys. 2, 133 (2019), arXiv: 1807.04677.

    Article  Google Scholar 

  37. P. San-Jose, J. Cayao, E. Prada, and R. Aguado, Sci. Rep. 6, 21427 (2016).

    Article  ADS  Google Scholar 

  38. J. Cayao, E. Prada, P. San-Jose, and R. Aguado, Phys. Rev. B 91, 024514 (2015), arXiv: 1410.6074.

    Article  ADS  Google Scholar 

  39. A. Vuik, B. Nijholt, A. R. Akhmerov, and M. Wimmer, arXiv: 1806.02801.

  40. G. W. Semenoff, and P. Sodano, arXiv: cond-mat/0601261; arXiv: cond-mat/0605147.

  41. S. Tewari, C. Zhang, S. Das Sarma, C. Nayak, and D. H. Lee, Phys. Rev. Lett. 100, 027001 (2008), arXiv: cond-mat/0703717.

    Article  ADS  Google Scholar 

  42. L. Fu, Phys. Rev. Lett. 104, 056402 (2010), arXiv: 0909.5172.

    Article  ADS  Google Scholar 

  43. X. Q. Li, and L. Xu, Phys. Rev. B 101, 205401 (2020).

    Article  ADS  Google Scholar 

  44. L. Qin, W. Feng, and X. Q. Li, Chin. Phys. B, (2021) https://doi.org/10.1088/1674-1056/ac1572.

  45. W. Feng, L. Qin, and X. Q. Li, arXiv: 2108.12778.

  46. X. Q. Li, J. Y. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Phys. Rev. B 71, 205304 (2005), arXiv: cond-mat/0409643.

    Article  ADS  Google Scholar 

  47. J. Jin, J. Li, Y. Liu, X. Q. Li, and Y. J. Yan, J. Chem. Phys. 140, 244111 (2014).

    Article  ADS  Google Scholar 

  48. I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Phys. Rep. 358, 309 (2002).

    Article  ADS  Google Scholar 

  49. S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nyg, P. Krogstrup, and C. M. Marcus, Nature 531, 206 (2016), arXiv: 1603.03217.

    Article  ADS  Google Scholar 

  50. R. M. Lutchyn, K. Flensberg, and L. I. Glazman, Phys. Rev. B 94, 125407 (2016), arXiv: 1606.06756.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Qi Li or Wei Feng.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303304), and the National Natural Science Foundation of China (Grant Nos. 11675016, 11974011, and 61905174).

Supporting Information

The supporting information is available online at http://phys.scichina.com and http://slink.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XQ., Feng, W., Qin, L. et al. Modified Bogoliubov-de Gennes treatment for Majorana conductances in three-terminal transports. Sci. China Phys. Mech. Astron. 65, 237211 (2022). https://doi.org/10.1007/s11433-021-1811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1811-6

Keywords