Abstract
We consider a two-lead (three-terminal) setup of non-local transport through Majorana zero modes (MZMs) and construct a Majorana master equation (which is also valid for small bias voltages). We first present representative results of current and then show that only a modified Bogoliubov-de Gennes (BdG) treatment can consistently recover the same results. Based on the interplay of the two approaches, we reveal the existence of non-vanishing channels of teleportation and crossed Andreev reflections even at the limit ϵM → 0 (zero coupling energy of the MZMs), which leads to new predictions for the height of the zero-bias-peak of the local conductance and the ϵM-scaling behavior of the teleportation conductance, for verification by experiments.
Similar content being viewed by others
References
A. Y. Kitaev, Phys.-Usp. 44, 131 (2001), arXiv: cond-mat/0010440.
A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
S. D. Sarma, M. Freedman, and C. Nayak, npj Quant. Inf. 1, 15001 (2015).
R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010), arXiv: 1002.4033.
Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010), arXiv: 1003.1145.
L. Fu, and C. L. Kane, Phys. Rev. B 79, 161408 (2009), arXiv: 0804.4469.
J. Cayao, P. San-Jose, A. M. Black-Schaffer, R. Aguado, and E. Prada, Phys. Rev. B 96, 205425 (2017), arXiv: 1707.05117.
J. Cayao, A. M. Black-Schaffer, E. Prada, and R. Aguado, Beilstein J. Nanotechnol. 9, 1339 (2018).
J. Cayao, and A. M. Black-Schaffer, Eur. Phys. J. Spec. Top. 227, 1387 (2018), arXiv: 1806.09394.
C. J. Bolech, and E. Demler, Phys. Rev. Lett. 98, 237002 (2007), arXiv: cond-mat/0607779.
J. Nilsson, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev. Lett. 101, 120403 (2008), arXiv: 0806.4889.
B. Zocher, and B. Rosenow, Phys. Rev. Lett. 111, 036802 (2013), arXiv: 1208.4092.
H. F. Lü, H. Z. Lu, and S. Q. Shen, Phys. Rev. B 86, 075318 (2012), arXiv: 1208.3070.
Y. Cao, P. Wang, G. Xiong, M. Gong, and X. Q. Li, Phys. Rev. B 86, 115311 (2012), arXiv: 1205.0322.
K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001 (2009), arXiv: 0907.1909.
M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C. W. J. Beenakker, New J. Phys. 13, 053016 (2011), arXiv: 1101.5795.
K. Sengupta, I. Žutić, H. J. Kwon, V. M. Yakovenko, and S. Das Sarma, Phys. Rev. B 63, 144531 (2001), arXiv: cond-mat/0010206.
K. Flensberg, Phys. Rev. B 82, 180516(R) (2010), arXiv: 1009.3533.
E. B. Hansen, J. Danon, and K. Flensberg, Phys. Rev. B 93, 094501(R) (2016), arXiv: 1511.03877.
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012), arXiv: 1204.2792.
H. Zhang, D. E. Liu, M. Wimmer, and L. P. Kouwenhoven, Nat. Commun. 10, 5128 (2019), arXiv: 1905.07882.
B. van Heck, R. M. Lutchyn, and L. I. Glazman, Phys. Rev. B 93, 235431 (2016), arXiv: 1603.08258.
C. K. Chiu, J. D. Sau, and S. Das Sarma, Phys. Rev. B 96, 054504 (2017), arXiv: 1702.04357.
S. Vaitiekėnas, M. T. Deng, J. Nygård, P. Krogstrup, and C. M. Marcus, Phys. Rev. Lett. 121, 037703 (2018), arXiv: 1710.04300.
S. Vaitiekėnas, A. M. Whiticar, M. T. Deng, F. Krizek, J. E. Sestoft, C. J. Palmstrøm, S. Marti-Sanchez, J. Arbiol, P. Krogstrup, L. Casparis, and C. M. Marcus, Phys. Rev. Lett. 121, 147701 (2018).
L. Hofstetter, S. Csonka, A. Baumgartner, G. Fülöp, S. d’Hollosy, J. Nyg, and C. Schönenberger, Phys. Rev. Lett. 107, 136801 (2011), arXiv: 1105.2583.
J. Gramich, A. Baumgartner, and C. Schönenberger, Phys. Rev. B 96, 195418 (2017), arXiv: 1612.01201.
E. B. Hansen, J. Danon, and K. Flensberg, Phys. Rev. B 97, 041411(R) (2018), arXiv: 1712.07972.
J. Danon, A. B. Hellenes, E. B. Hansen, L. Casparis, A. P. Higgin-botham, and K. Flensberg, Phys. Rev. Lett. 124, 036801 (2020), arXiv: 1905.05438.
G. C. Ménard, G. L. R. Anselmetti, E. A. Martinez, D. Puglia, F. K. Malinowski, J. S. Lee, S. Choi, M. Pendharkar, C. J. Palmstrøm, K. Flensberg, C. M. Marcus, L. Casparis, and A. P. Higginbotham, Phys. Rev. Lett. 124, 036802 (2020), arXiv: 1905.05505.
C. X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B 96, 075161 (2017), arXiv: 1705.02035.
E. Prada, R. Aguado, and P. San-Jose, Phys. Rev. B 96, 085418 (2017), arXiv: 1702.02525.
O. A. Awoga, J. Cayao, and A. M. Black-Schaffer, Phys. Rev. Lett. 123, 117001 (2019), arXiv: 1904.03783.
M. T. Deng, S. Vaitiėkenas, E. Prada, P. San-Jose, J. Nyg, P. Krogstrup, R. Aguado, and C. M. Marcus, Phys. Rev. B 98, 085125 (2018), arXiv: 1712.03536.
E. Prada, P. San-Jose, M. W. A. de Moor, A. Geresdi, E. J. H. Lee, J. Klinovaja, D. Loss, J. Nygard, R. Aguado, and L. P. Kouwenhoven, arXiv: 1911.04512v2.
J. Avila, F. Peñaranda, E. Prada, P. San-Jose, and R. Aguado, Commun. Phys. 2, 133 (2019), arXiv: 1807.04677.
P. San-Jose, J. Cayao, E. Prada, and R. Aguado, Sci. Rep. 6, 21427 (2016).
J. Cayao, E. Prada, P. San-Jose, and R. Aguado, Phys. Rev. B 91, 024514 (2015), arXiv: 1410.6074.
A. Vuik, B. Nijholt, A. R. Akhmerov, and M. Wimmer, arXiv: 1806.02801.
G. W. Semenoff, and P. Sodano, arXiv: cond-mat/0601261; arXiv: cond-mat/0605147.
S. Tewari, C. Zhang, S. Das Sarma, C. Nayak, and D. H. Lee, Phys. Rev. Lett. 100, 027001 (2008), arXiv: cond-mat/0703717.
L. Fu, Phys. Rev. Lett. 104, 056402 (2010), arXiv: 0909.5172.
X. Q. Li, and L. Xu, Phys. Rev. B 101, 205401 (2020).
L. Qin, W. Feng, and X. Q. Li, Chin. Phys. B, (2021) https://doi.org/10.1088/1674-1056/ac1572.
W. Feng, L. Qin, and X. Q. Li, arXiv: 2108.12778.
X. Q. Li, J. Y. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Phys. Rev. B 71, 205304 (2005), arXiv: cond-mat/0409643.
J. Jin, J. Li, Y. Liu, X. Q. Li, and Y. J. Yan, J. Chem. Phys. 140, 244111 (2014).
I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Phys. Rep. 358, 309 (2002).
S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nyg, P. Krogstrup, and C. M. Marcus, Nature 531, 206 (2016), arXiv: 1603.03217.
R. M. Lutchyn, K. Flensberg, and L. I. Glazman, Phys. Rev. B 94, 125407 (2016), arXiv: 1606.06756.
Author information
Authors and Affiliations
Corresponding authors
Additional information
This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303304), and the National Natural Science Foundation of China (Grant Nos. 11675016, 11974011, and 61905174).
Supporting Information
The supporting information is available online at http://phys.scichina.com and http://slink.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Rights and permissions
About this article
Cite this article
Li, XQ., Feng, W., Qin, L. et al. Modified Bogoliubov-de Gennes treatment for Majorana conductances in three-terminal transports. Sci. China Phys. Mech. Astron. 65, 237211 (2022). https://doi.org/10.1007/s11433-021-1811-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11433-021-1811-6