Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extremely low-energy collective modes in a quasi-one-dimensional topological system

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We have investigated the quasiparticle dynamics and collective excitations in the quasi-one-dimensional material ZrTe5 using ultrafast optical pump-probe spectroscopy. Our time-domain results reveal two coherent oscillations having extremely low energies of ħω1 ∼0.33 meV (0.08 THz) and ħω2 ∼1.9 meV (0.45 THz), which are softened as the temperature approaches two different critical temperatures (∼54 K and ∼135 K). We attribute these two collective excitations to the amplitude mode of photoinduced dynamic charge density waves in ZrTe5 with tremendously small nesting wave vectors. Furthermore, a peculiar quasiparticle decay process associated with the ħω2 mode with a timescale of ∼1–2 ps is found below the transition temperature T* (∼135 K). Our findings provide pivotal information for studying the fluctuating order parameters and their associated quasiparticle dynamics in various low-dimensional topological systems and other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Grüner, Density Waves in Solids (Cambridge, Westview Press, 1994).

    Google Scholar 

  2. S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Kapitulnik, and C. Howald, Rev. Mod. Phys. 75, 1201 (2003), arXiv: cond-mat/0210683.

    Article  ADS  Google Scholar 

  3. H. Weng, X. Dai, and Z. Fang, Phys. Rev. X 4, 011002 (2014), arXiv: 1309.7529.

    Google Scholar 

  4. J. Mutch, W. C. Chen, P. Went, T. Qian, I. Z. Wilson, A. Andreev, C. C. Chen, and J. H. Chu, Sci. Adv. 5, eaav9771 (2019), arXiv: 1808.07898.

    Article  ADS  Google Scholar 

  5. L. Luo, D. Cheng, B. Song, L. L. Wang, C. Vaswani, P. M. Lozano, G. Gu, C. Huang, R. H. J. Kim, Z. Liu, J. M. Park, Y. Yao, K. Ho, I. E. Perakis, Q. Li, and J. Wang, Nat. Mater. 20, 329 (2021).

    Article  ADS  Google Scholar 

  6. R. Wu, J. Z. Ma, S. M. Nie, L. X. Zhao, X. Huang, J. X. Yin, B. B. Fu, P. Richard, G. F. Chen, Z. Fang, X. Dai, H. M. Weng, T. Qian, H. Ding, and S. H. Pan, Phys. Rev. X 6, 021017 (2016).

    Google Scholar 

  7. G. Manzoni, L. Gragnaniello, G. Autés, T. Kuhn, A. Sterzi, F. Cilento, M. Zacchigna, V. Enenkel, I. Vobornik, L. Barba, F. Bisti, P. Bugnon, A. Magrez, V. N. Strocov, H. Berger, O. V. Yazyev, M. Fonin, F. Parmigiani, and A. Crepaldi, Phys. Rev. Lett. 117, 237601 (2016), arXiv: 1608.03433.

    Article  ADS  Google Scholar 

  8. H. Xiong, J. A. Sobota, S. L. Yang, H. Soifer, A. Gauthier, M. H. Lu, Y. Y. Lv, S. H. Yao, D. Lu, M. Hashimoto, P. S. Kirchmann, Y. F. Chen, and Z. X. Shen, Phys. Rev. B 95, 195119 (2017), arXiv: 1704.05161.

    Article  ADS  Google Scholar 

  9. Y. Y. Lv, B. B. Zhang, X. Li, K. W. Zhang, X. B. Li, S. H. Yao, Y. B. Chen, J. Zhou, S. T. Zhang, M. H. Lu, S. C. Li, and Y. F. Chen, Phys. Rev. B 97, 115137 (2018).

    Article  ADS  Google Scholar 

  10. R. Y. Chen, S. J. Zhang, J. A. Schneeloch, C. Zhang, Q. Li, G. D. Gu, and N. L. Wang, Phys. Rev. B 92, 075107 (2015), arXiv: 1505.00307.

    Article  ADS  Google Scholar 

  11. Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, and F. Xiu, Nat. Commun. 7, 12516 (2016).

    Article  ADS  Google Scholar 

  12. J. Wang, J. Niu, B. Yan, X. Li, R. Bi, Y. Yao, D. Yu, and X. Wu, Proc. Natl. Acad. Sci. USA 115, 9145 (2018).

    Article  ADS  Google Scholar 

  13. T. M. Tritt, N. D. Lowhorn, R. T. Littleton IV, A. Pope, C. R. Feger, and J. W. Kolis, Phys. Rev. B 60, 7816 (1999).

    Article  ADS  Google Scholar 

  14. J. Niu, J. Wang, Z. He, C. Zhang, X. Li, T. Cai, X. Ma, S. Jia, D. Yu, and X. Wu, Phys. Rev. B 95, 035420 (2017), arXiv: 1511.09315.

    Article  ADS  Google Scholar 

  15. Y. Jiang, Z. L. Dun, H. D. Zhou, Z. Lu, K. W. Chen, S. Moon, T. Besara, T. M. Siegrist, R. E. Baumbach, D. Smirnov, and Z. Jiang, Phys. Rev. B 96, 041101 (2017), arXiv: 1703.08193.

    Article  ADS  Google Scholar 

  16. Z. G. Chen, R. Y. Chen, R. D. Zhong, J. Schneeloch, C. Zhang, Y. Huang, F. Qu, R. Yu, Q. Li, G. D. Gu, and N. L. Wang, Proc. Natl. Acad. Sci. USA 114, 816 (2017), arXiv: 1701.07726.

    Article  ADS  Google Scholar 

  17. B. Xu, L. X. Zhao, P. Marsik, E. Sheveleva, F. Lyzwa, Y. M. Dai, G. F. Chen, X. G. Qiu, and C. Bernhard, Phys. Rev. Lett. 121, 187401 (2018), arXiv: 1811.00772.

    Article  ADS  Google Scholar 

  18. Y. Jiang, J. Wang, T. Zhao, Z. L. Dun, Q. Huang, X. S. Wu, M. Mourigal, H. D. Zhou, W. Pan, M. Ozerov, D. Smirnov, and Z. Jiang, Phys. Rev. Lett. 125, 046403 (2020), arXiv: 2003.13500.

    Article  ADS  Google Scholar 

  19. X. B. Li, W. K. Huang, Y. Y. Lv, K. W. Zhang, C. L. Yang, B. B. Zhang, Y. B. Chen, S. H. Yao, J. Zhou, M. H. Lu, L. Sheng, S. C. Li, J. F. Jia, Q. K. Xue, Y. F. Chen, and D. Y. Xing, Phys. Rev. Lett. 116, 176803 (2016).

    Article  ADS  Google Scholar 

  20. Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosié, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Nat. Phys. 12, 550 (2016), arXiv: 1412.6543.

    Article  Google Scholar 

  21. T. Liang, J. Lin, Q. Gibson, S. Kushwaha, M. Liu, W. Wang, H. Xiong, J. A. Sobota, M. Hashimoto, P. S. Kirchmann, Z. X. Shen, R. J. Cava, and N. P. Ong, Nat. Phys. 14, 451 (2018), arXiv: 1612.06972.

    Article  Google Scholar 

  22. F. Tang, Y. Ren, P. Wang, R. Zhong, J. Schneeloch, S. A. Yang, K. Yang, P. A. Lee, G. Gu, Z. Qiao, and L. Zhang, Nature 569, 537 (2019), arXiv: 1807.02678.

    Article  ADS  Google Scholar 

  23. F. Qin, S. Li, Z. Z. Du, C. M. Wang, W. Zhang, D. Yu, H. Z. Lu, and X. C. Xie, Phys. Rev. Lett. 125, 206601 (2020), arXiv: 2003.02520.

    Article  ADS  Google Scholar 

  24. F. J. Disalvo, R. M. Fleming, and J. V. Waszczak, Phys. Rev. B 24, 2935 (1981).

    Article  ADS  Google Scholar 

  25. B. Fu, H. W. Wang, and S. Q. Shen, Phys. Rev. Lett. 125, 256601 (2020), arXiv: 2007.08700.

    Article  ADS  Google Scholar 

  26. D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, Phys. Rev. Lett. 107, 077401 (2011), arXiv: 1108.1848.

    Article  ADS  Google Scholar 

  27. M. C. Wang, S. Qiao, Z. Jiang, S. N. Luo, and J. Qi, Phys. Rev. Lett. 116, 036601 (2016), arXiv: 1511.02994.

    Article  ADS  Google Scholar 

  28. R. V. Yusupov, T. Mertelj, J. H. Chu, I. R. Fisher, and D. Mihailovic, Phys. Rev. Lett. 101, 246402 (2008), arXiv: 0807.1022.

    Article  ADS  Google Scholar 

  29. D. H. Torchinsky, F. Mahmood, A. T. Bollinger, I. Bozovié, and N. Gedik, Nat. Mater. 12, 387 (2013), arXiv: 1301.6128.

    Article  ADS  Google Scholar 

  30. Y. P. Liu, Y. J. Zhang, J. J. Dong, H. Lee, Z. X. Wei, W. L. Zhang, C. Y. Chen, H. Q. Yuan, Y. F. Yang, and J. Qi, Phys. Rev. Lett. 124, 057404 (2020), arXiv: 1906.07990.

    Article  ADS  Google Scholar 

  31. J. Qi, T. Durakiewicz, S. A. Trugman, J. X. Zhu, P. S. Riseborough, R. Baumbach, E. D. Bauer, K. Gofryk, J. Q. Meng, J. J. Joyce, A. J. Taylor, and R. P. Prasankumar, Phys. Rev. Lett. 111, 057402 (2013), arXiv: 1303.2694.

    Article  ADS  Google Scholar 

  32. W. Yu, Y. Jiang, J. Yang, Z. L. Dun, H. D. Zhou, Z. Jiang, P. Lu, and W. Pan, Sci. Rep. 6, 35357 (2016), arXiv: 1602.06824.

    Article  ADS  Google Scholar 

  33. J. Qi, X. Chen, W. Yu, P. Cadden-Zimansky, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, Appl. Phys. Lett. 97, 182102 (2010), arXiv: 1010.4265.

    Article  ADS  Google Scholar 

  34. J. P. Hinton, J. D. Koralek, G. Yu, E. M. Motoyama, Y. M. Lu, A. Vishwanath, M. Greven, and J. Orenstein, Phys. Rev. Lett. 110, 217002 (2013).

    Article  ADS  Google Scholar 

  35. D. J. Hilton, and C. L. Tang, Phys. Rev. Lett. 89, 146601 (2002).

    Article  ADS  Google Scholar 

  36. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer Science Business Media, Berlin, 2013).

    Google Scholar 

  37. D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, Rev. Mod. Phys. 83, 471 (2011), arXiv: 1106.2309.

    Article  ADS  Google Scholar 

  38. R. D. Averitt, and A. J. Taylor, J. Phys.-Condens. Matter 14, R1357 (2002).

    Article  ADS  Google Scholar 

  39. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. B 51, 11433 (1995).

    Article  ADS  Google Scholar 

  40. M. Hase, K. Ishioka, J. Demsar, K. Ushida, and M. Kitajima, Phys. Rev. B 71, 184301 (2005), arXiv: cond-mat/0504540.

    Article  ADS  Google Scholar 

  41. M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, Nano Lett. 12, 3532 (2012), arXiv: 1206.4561.

    Article  ADS  Google Scholar 

  42. L. Cheng, C. La-o-vorakiat, C. S. Tang, S. K. Nair, B. Xia, L. Wang, J. X. Zhu, and E. E. M. Chia, Appl. Phys. Lett. 104, 211906 (2014).

    Article  ADS  Google Scholar 

  43. P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).

    Article  ADS  Google Scholar 

  44. Y. M. Sheu, Y. J. Chien, C. Uher, S. Fahy, and D. A. Reis, Phys. Rev. B 87, 075429 (2013), arXiv: 1211.4042.

    Article  ADS  Google Scholar 

  45. Y. M. Dai, J. Bowlan, H. Li, H. Miao, S. F. Wu, W. D. Kong, P. Richard, Y. G. Shi, S. A. Trugman, J. X. Zhu, H. Ding, A. J. Taylor, D. A. Yarotski, and R. P. Prasankumar, Phys. Rev. B 92, 161104 (2015), arXiv: 1506.07601.

    Article  ADS  Google Scholar 

  46. B. Monserrat, and A. Narayan, Phys. Rev. Res. 1, 033181 (2019), arXiv: 1909.07613.

    Article  Google Scholar 

  47. D. H. Torchinsky, G. F. Chen, J. L. Luo, N. L. Wang, and N. Gedik, Phys. Rev. Lett. 105, 027005 (2010), arXiv: 0905.0678.

    Article  ADS  Google Scholar 

  48. Y. Zhang, C. Wang, L. Yu, G. Liu, A. Liang, J. Huang, S. Nie, X. Sun, Y. Zhang, B. Shen, J. Liu, H. Weng, L. Zhao, G. Chen, X. Jia, C. Hu, Y. Ding, W. Zhao, Q. Gao, C. Li, S. He, L. Zhao, F. Zhang, S. Zhang, F. Yang, Z. Wang, Q. Peng, X. Dai, Z. Fang, Z. Xu, C. Chen, and X. J. Zhou, Nat. Commun. 8, 15512 (2017), arXiv: 1602.03576.

    Article  ADS  Google Scholar 

  49. I. Katayama, K. Inoue, Y. Arashida, Y. Wu, H. Yang, T. Inoue, S. Chiashi, S. Maruyama, T. Nagao, M. Kitajima, and J. Takeda, Phys. Rev. B 101, 245408 (2020).

    Article  ADS  Google Scholar 

  50. M. C. Wang, H. S. Yu, J. Xiong, Y. F. Yang, S. N. Luo, K. Jin, and J. Qi, Phys. Rev. B 97, 155157 (2018).

    Article  ADS  Google Scholar 

  51. H. J. Zeiger, J. Vidal, T. K. Cheng, E. P. Ippen, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 45, 768 (1992).

    Article  ADS  Google Scholar 

  52. G. Landa, A. Zwick, R. Carles, M. A. Renucci, and A. Kjekshus, Solid State Commun. 49, 1095 (1984).

    Article  ADS  Google Scholar 

  53. I. Taguchi, A. Grisel, and F. Levy, Solid State Commun. 46, 299 (1983).

    Article  ADS  Google Scholar 

  54. I. Gdor, T. Ghosh, O. Lioubashevski, and S. Ruhman, J. Phys. Chem. Lett. 8, 1920 (2017).

    Article  Google Scholar 

  55. G. Batignani, C. Ferrante, G. Fumero, and T. Scopigno, J. Phys. Chem. Lett. 10, 7789 (2019).

    Article  Google Scholar 

  56. D. Lim, V. Thorsmølle, R. Averitt, Q. Jia, K. Ahn, M. Graf, S. Trugman, and A. Taylor, Phys. Rev. B 71, 134403 (2005).

    Article  ADS  Google Scholar 

  57. J. K. Miller, J. Qi, Y. Xu, Y. J. Cho, X. Liu, J. K. Furdyna, I. Perakis, T. V. Shahbazyan, and N. Tolk, Phys. Rev. B 74, 113313 (2006), arXiv: cond-mat/0701226.

    Article  ADS  Google Scholar 

  58. R. Y. Chen, S. J. Zhang, M. Y. Zhang, T. Dong, and N. L. Wang, Phys. Rev. Lett. 118, 107402 (2017), arXiv: 1610.09468.

    Article  ADS  Google Scholar 

  59. A. Kogar, A. Zong, P. E. Dolgirev, X. Shen, J. Straquadine, Y. Q. Bie, X. Wang, T. Rohwer, I. C. Tung, Y. Yang, R. Li, J. Yang, S. Weathersby, S. Park, M. E. Kozina, E. J. Sie, H. Wen, P. Jarillo-Herrero, I. R. Fisher, X. Wang, and N. Gedik, Nat. Phys. 16, 159 (2019), arXiv: 1904.07472.

    Article  Google Scholar 

  60. S. Takada, K. Y. M. Wong, and T. Holstein, Phys. Rev. B 32, 4639 (1985).

    Article  ADS  Google Scholar 

  61. J. Richard, and J. Chen, Solid State Commun. 86, 485 (1993).

    Article  ADS  Google Scholar 

  62. C. Wang, H. Wang, Y. B. Chen, S. H. Yao, and J. Zhou, J. Appl. Phys. 123, 175104 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Qi.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974070, 11734006, 11925408, and 11921004), the Frontier Science Project of Dongguan (Grant No. 2019622101004), the National Key R&D Program of China (Grant Nos. 2016YFA0300600, and 2018YFA0305700), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), the K. C. Wong Education Foundation (Grant No. GJTD-2018-01), the Beijing Natural Science Foundation (Grant No. Z180008), the Beijing Municipal Science and Technology Commission (Grant No. Z191100007219013), and the CAS Interdisciplinary Innovation Team. We acknowledge the valuable discussion from Hrvoje Petek and Jure Demsar.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Zhang, S., Su, Y. et al. Extremely low-energy collective modes in a quasi-one-dimensional topological system. Sci. China Phys. Mech. Astron. 65, 257012 (2022). https://doi.org/10.1007/s11433-022-1855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1855-5

Keywords