Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Method for guiding the ablation catheter to the ablation site: a simulation and experimental study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Radiofrequency catheter ablation (RCA) procedures for treating ventricular arrhythmias have evolved significantly over the past several years; however, the use of RCA has been limited due to the difficulty in identifying the appropriate site for ablation. In this study, we investigate the accuracy of a computer algorithm to guide the tip of an ablation catheter to the exit site of the scar tissue or the site of abnormal automaticity (the “target site”). This algorithm involves modeling the body surface potentials corresponding to the wavefront at the target site for ablation and current pulses generated from a pair of electrodes at the tip of the ablation catheter with a single equivalent moving dipole (SEMD) in an infinite homogeneous volume conductor. Despite the fact that the use of the homogeneous volume conductor introduces systematic error in the estimated compared to the true dipole location, we find that the systematic error had minor influence in the ability of the algorithm to accurately guide the tip of the ablation catheter to the ablation site and the overall error (1.9 ± 1.1 mm) in the left ventricle is adequate for RCA procedures. These results were verified, in saline tank studies in which the distance between the dipole due to the catheter tip and the dipole due to the target site was found to be 2.66 ± 0.52 mm. In conclusion, our algorithm to estimate the SEMD parameters from body surface potentials can potentially be a useful method to rapidly and accurately guide the catheter tip to the arrhythmic site during an RCA procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armoundas AA, Feldman AB, Sherman DA, Cohen RJ (2001) Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source. Med Biol Eng Comput 39(5):562–570. doi:10.1007/BF02345147

    Article  Google Scholar 

  2. Armoundas AA, Feldman AB, Mukkamala R, Cohen RJ (2003) A single equivalent moving dipole model: an efficient approach for localizing sites of origin of ventricular electrical activation. Ann Biomed Eng 31(5):564–576. doi:10.1114/1.1567281

    Article  Google Scholar 

  3. Armoundas AA, Feldman AB, Mukkamala R, He B, Mullen TJ, Belk PA, Lee YZ, Cohen RJ (2003) Statistical accuracy of a moving equivalent dipole method to identify sites of origin of cardiac electrical activation. IEEE Trans Biomed Eng 50(12):1360–1370. doi:10.1109/TBME.2003.819849

    Article  Google Scholar 

  4. Berger T, Fischer G, Pfeifer B, Modre R, Hanser F, Trieb T, Roithinger FX, Stuehlinger M, Pachinger O, Tilg B, Hintringer F (2006) Single-beat noninvasive imaging of cardiac electrophysiology of ventricular pre-excitation. J Am Coll Cardiol 48(10):2045–2052. doi:10.1016/j.jacc.2006.08.019

    Article  Google Scholar 

  5. Bogun F, Kim HM, Han J, Tamirissa K, Tschopp D, Reich S, Elmouchi D, Igic P, Lemola K, Good E, Oral H, Chugh A, Pelosi F, Morady F (2006) Comparison of mapping criteria for hemodynamically tolerated, postinfarction ventricular tachycardia. Heart Rhythm 3(1):20–26. doi:10.1016/j.hrthm.2005.09.014

    Article  Google Scholar 

  6. Cheng LK, Sands GB, French RL, Withy SJ, Wong SP, Legget ME, Smith WM, Pullan AJ (2005) Rapid construction of a patient-specific torso model from 3D ultrasound for non-invasive imaging of cardiac electrophysiology. Med Biol Eng Comput 43(3):325–330. doi:10.1007/BF02345808

    Article  Google Scholar 

  7. de Chillou C, Lacroix D, Klug D, Magnin-Poull I, Marquie C, Messier M, Andronache M, Kouakam C, Sadoul N, Chen J, Aliot E, Kacet S (2002) Isthmus characteristics of reentrant ventricular tachycardia after myocardial infarction. Circulation 105(6):726–731. doi:10.1161/hc0602.103675

    Article  Google Scholar 

  8. Fukuoka Y, Oostendorp TF, Sherman DA, Armoundas AA (2006) Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model. IEEE Trans Biomed Eng 53(12 Pt 1):2436–2444. doi:10.1109/TBME.2006.880882

    Article  Google Scholar 

  9. Gepstein L, Hayam G, Ben-Haim SA (1997) A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results Circulation 95(6):1611–1622

    Google Scholar 

  10. Gornick CC, Adler SW, Pederson B, Hauck J, Budd J, Schweitzer J (1999) Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation 99(6):829–835

    Google Scholar 

  11. Huiskamp G, Van Oosterom A (1988) The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans Biomed Eng 35(12):1047–1058. doi:10.1109/10.8689

    Article  Google Scholar 

  12. Langberg JJ, Harvey M, Calkins H, el-Atassi R, Kalbfleisch SJ, Morady F (1993) Titration of power output during radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia. Pacing Clin Electrophysiol 16(3 Pt 1):465–470. doi:10.1111/j.1540-8159.1993.tb01609.x

    Article  Google Scholar 

  13. Lee MA, Morady F, Kadish A, Schamp DJ, Chin MC, Scheinman MM, Griffin JC, Lesh MD, Pederson D, Goldberger J (1991) Catheter modification of the atrioventricular junction with radiofrequency energy for control of atrioventricular nodal reentry tachycardia. Circulation 83(3):827–835

    Google Scholar 

  14. Modre R, Tilg B, Fischer G, Hanser F, Messnarz B, Seger M, Schocke MF, Berger T, Hintringer F, Roithinger FX (2003) Atrial noninvasive activation mapping of paced rhythm data. J Cardiovasc Electrophysiol 14(7):712–719

    Google Scholar 

  15. Nademanee K, Kosar EM (1998) A nonfluoroscopic catheter-based mapping technique to ablate focal ventricular tachycardia. Pacing Clin Electrophysiol 21(7):1442–1447. doi:10.1111/j.1540-8159.1998.tb00216.x

    Article  Google Scholar 

  16. Nelder JA, Mead R (1965) A Simplex method for function minimization. Comput J 7:308–313

    MATH  Google Scholar 

  17. Okishige K, Kawabata M, Umayahara S, Yamashiro K, Gotoh M, Isobe M, Strickberger SA (2003) Radiofrequency catheter ablation of various kinds of arrhythmias guided by virtual electrograms using a noncontact, computerized mapping system. Circ J 67(5):455–460. doi:10.1253/circj.67.455

    Article  Google Scholar 

  18. Peeters HA, SippensGroenewegen A, Wever EF, Ramanna H, Linnenbank AC, Potse M, Grimbergen CA, van Hemel NM, Hauer RN, Robles de Medina EO (1999) Clinical application of an integrated 3-phase mapping technique for localization of the site of origin of idiopathic ventricular tachycardia. Circulation 99(10):1300–1311

    Google Scholar 

  19. Ramanathan C, Ghanem RN, Jia P, Ryu K, Rudy Y (2004) Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med 10(4):422–428. doi:10.1038/nm1011

    Article  Google Scholar 

  20. Ramanathan C, Jia P, Ghanem R, Ryu K, Rudy Y (2006) Activation and repolarization of the normal human heart under complete physiological conditions. Proc Natl Acad Sci USA 103(16):6309–6314. doi:10.1073/pnas.0601533103

    Article  Google Scholar 

  21. Schilling RJ, Davies DW, Peters NS (1998) Characteristics of sinus rhythm electrograms at sites of ablation of ventricular tachycardia relative to all other sites: a noncontact mapping study of the entire left ventricle. J Cardiovasc Electrophysiol 9(9):921–933. doi:10.1111/j.1540-8167.1998.tb00133.x

    Article  Google Scholar 

  22. Schilling RJ, Peters NS, Davies DW (1998) Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter: comparison of contact and reconstructed electrograms during sinus rhythm. Circulation 98(9):887–898

    Google Scholar 

  23. Smith NP, Buist ML, Pullan AJ (2003) Altered T wave dynamics in a contracting cardiac model. J Cardiovasc Electrophysiol 14(Suppl 10):S203–S209. doi:10.1046/j.1540.8167.90312.x

    Article  Google Scholar 

  24. Stevenson WG, Khan H, Sager P, Saxon LA, Middlekauff HR, Natterson PD, Wiener I (1993) Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation 88(4 Pt 1):1647–1670

    Google Scholar 

  25. Stevenson WG, Sager PT, Natterson PD, Saxon LA, Middlekauff HR, Wiener I (1995) Relation of pace mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuits in human infarct scars. J Am Coll Cardiol 26(2):481–488. doi:10.1016/0735-1097(95)80026-D

    Article  Google Scholar 

  26. Stevenson WG, Delacretaz E, Friedman PL, Ellison KE (1998) Identification and ablation of macroreentrant ventricular tachycardia with the CARTO electroanatomical mapping system. Pacing Clin Electrophysiol 21(7):1448–1456. doi:10.1111/j.1540-8159.1998.tb00217.x

    Article  Google Scholar 

  27. van Oosterom A, van Dam RT (1976) Potential distribution in the left ventricular wall during depolarization. Adv Cardiol 16:27–31

    Google Scholar 

  28. Zhang X, Ramachandra I, Liu Z, Muneer B, Pogwizd SM, He B (2005) Noninvasive three-dimensional electrocardiographic imaging of ventricular activation sequence. Am J Physiol Heart Circ Physiol 289(6):H2724–H2732. doi:10.1152/ajpheart.00639.2005

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by a Beginning Grant-in-Aid (#0365304U) and a Scientist Development Grant (#0635127 N) American Heart Association awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis A. Armoundas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuoka, Y., Oostendorp, T.F. & Armoundas, A.A. Method for guiding the ablation catheter to the ablation site: a simulation and experimental study. Med Biol Eng Comput 47, 267–278 (2009). https://doi.org/10.1007/s11517-009-0441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0441-4

Keywords