Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee J, Song Y, Choi N, Cho S, Seo JK, Kim DH (2013) Noninvasive measurement of conductivity anisotropy at larmor frequency using MRI. Comput Math Method M. https://doi.org/10.1155/2013/421619

  2. Jamal W, Das S, Maharatna K, Pan I, Kuyucu D (2015) Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks. Physica A 434:273–295

    Article  Google Scholar 

  3. Haueisen J, Tuch DS, Ramon C, Schimpfd PH, Wedeenb VJ, Georgee JS, Belliveau JW (2002) The influence of brain tissue anisotropy on human EEG and MEG. NeuroImage 15(1):159–166

    Article  PubMed  CAS  Google Scholar 

  4. Wu ZX, Zhu SA, He B (2009) Effects of brain white matter anisotropic conductivity on distribution of EEG calculated with finite element method based on diffusion tensor image. Space Med Med Eng 22(6):433–436

    Google Scholar 

  5. Arkhtari M, Byrant HC, Mamelak AN, Flynn ER (2002) Conductivities of three-layer live human skull. Brain Topogr 14(3):151–167

    Article  Google Scholar 

  6. Odabaee M, Tokariev A, Layeghy S, Mesbah M, Colditz PB, Ramon G, Vanhatalo S (2014) Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models. NeuroImage 96:73–80

    Article  PubMed  Google Scholar 

  7. Nicholson PW (1965) Specific impedance of cerebral white matter. Exp Neurol 13(4):386–401

    Article  PubMed  CAS  Google Scholar 

  8. Hoekema R, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, Huiskamp GJM, Ansems J, van Huffelen AC (2003) Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr 16(1):29–38

    Article  PubMed  CAS  Google Scholar 

  9. Güllmar D, Haueisen J, Reichenbach JR (2010) Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study. NeuroImage 51(1):145–163

    Article  PubMed  Google Scholar 

  10. Acar ZA, Acar CE, Makeig S (2015) Simultaneous head tissue conductivity and EEG source location estimation. NeuroImage 124:168–180

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wendel K, Väisänen O, Malmivuo J et al (2009) EEG/MEG source imaging: methods, challenges, and open issues. Comput Intel Neurosc 2009:656092

    Article  Google Scholar 

  12. Åström M, Lemaire JJ, Wårdell K (2012) Influence of heterogeneous and anisotropic tissue conductivity on electric field distribution in deep brain stimulation. Med Biol Eng Comput 50(1):23–32

    Article  PubMed  Google Scholar 

  13. Lee WH, Liu Z, Mueller BA, Lim K, He B (2009) Influence of white matter anisotropic conductivity on EEG source localization: comparison to fMRI in human primary visual cortex. Clin Neurophysiol 120(12):2071–2081

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mamata H, De Girolami U, Hoge WS, Jolesz FA, Maier SE (2006) Collateral nerve fibers in human spinal cord: visualization with magnetic resonance diffusion tensor imaging. NeuroImage 31(1):24–30

    Article  PubMed  Google Scholar 

  15. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249

    Article  PubMed  CAS  Google Scholar 

  16. Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223

    Article  PubMed  CAS  Google Scholar 

  17. Ranck JB (1963) Specific impedance of rabbit cerebral cortex. Exp Neurol 7(2):144–152

    Article  PubMed  Google Scholar 

  18. Seo JK, Pyo HC, Park C, Kwon O, Woo EJ (2004) Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study. Phys Med Biol 49(18):4371–4382

    Article  PubMed  Google Scholar 

  19. Sajib SZK, Kim JE, Jeong WC, Kwon OI, Woo EJ (2015) Reconstruction of apparent orthotropic conductivity tensor image using magnetic resonance electrical impedance tomography. J Appl Phys 117:1047011–10470111

    Article  CAS  Google Scholar 

  20. Koessler L, Colnat-Coulbois S, Cecchin T, Hofmanis J, Dmochowski JP, Norcia AM, Maillard LG (2017) In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes. Hum Brain Mapp 38(2):974–986

    Article  PubMed  Google Scholar 

  21. Liston A, Bayford R, Holder D (2012) A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brain. Med Biol Eng Comput 50(5):425–437

    Article  PubMed  Google Scholar 

  22. Liu Y, Zhang YC (2014) A feasibility study of magnetic resonance electrical impedance tomography for prostate cancer detection. Physiol Meas 35(4):567–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu Y, Zhu SA, He B (2009) Induced current magnetic resonance electrical impedance tomography of brain tissues based on the J-substitution algorithm: a simulation study. Phys Med Biol 54(14):4561–4573

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gursoy D, Scharfetter H (2010) Anisotropic conductivity tensor imaging using magnetic induction tomography. Physiol Meas 31:135–145

    Article  Google Scholar 

  25. Chauhan M, Indahlastari A, Kasinadhuni AK, Schär M, Mareci TH, Sadleir RJ (2017) Low-frequency conductivity tensor imaging of the human head in vivo using DT-MREIT: first study. IEEE Trans Med Imaging 37(4):966–976

    Article  Google Scholar 

  26. Mori S (2007) Introduction to diffusion tensor imaging. In: Mori S (ed) Mathematics of diffusion measurement. Elsevier, Oxford, pp 19–32

  27. Kubicki M, Westin CF, Maier SE (2002) Diffusion tensor imaging and its application to neuropsychiatric disorders. Harvard Rev of Psychiat 10(6):324–336

    Article  Google Scholar 

  28. Shimony JS, McKinstry RC, Akbudak E (1999) Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 212:770–784

    Article  PubMed  CAS  Google Scholar 

  29. Basser PJ, Mattiello J, Bihan DL (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30(3):813–826

    Article  PubMed  CAS  Google Scholar 

  31. Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW (1999) Conductivity mapping of biological tissue using diffusion MRI. Ann N Y Acad Sci 888:314–316

    Article  PubMed  CAS  Google Scholar 

  32. Sekino M, Yamaguchi K, Iriguchi N, Ueno S (2003) Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys 93(10):6730–6732

    Article  CAS  Google Scholar 

  33. Wang K, Zhu S, Mueller BA, Mueller BA, Lim KO, Liu ZM, He B (2008) A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng 55(10):2481–2486

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu ZX, Zhu SA, He B (2009) A new method of computing the conductivity tensor of brain tissue based on water diffusion tensor. Chin J Biomed Eng 28(4):521–525

    CAS  Google Scholar 

  35. O’Donnell LJ, Westin CF (2011) An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 22(2):1–23

    Article  Google Scholar 

  36. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  PubMed  Google Scholar 

  37. Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257:102–109

    Article  PubMed  CAS  Google Scholar 

  38. Kapur T, Grimson WEL, III WMW, Kikinis R (1996) Segmentation of brain tissue from magnetic resonance images. Med Image Anal 1(2):109–127

    Article  PubMed  CAS  Google Scholar 

  39. Hoeltzell PB, Dykes RW (1979) Conductivity in the somatosensory cortex of the cat—evidence for cortical anisotropy. Brain Res 177(1):61–82

    Article  PubMed  CAS  Google Scholar 

  40. Stanisz GJ (2003) Diffusion MR in biological systems: tissue compartments and exchange. Israel J Chem 43(1):33–44

    CAS  Google Scholar 

  41. Geddes LA, Baker LE (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng Comput 5(3):271–293

    Article  CAS  Google Scholar 

  42. Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW (2001) Conductivity tensor mapping of the human brain using diffusion tensor MRI. PNAS 98(20):11697–11701

    Article  PubMed  CAS  Google Scholar 

  43. Sekino M, Inoue Y, Ueno S (2004) Magnetic resonance imaging of mean values and anisotropy of electrical conductivity in the human brain. Neurology and Clin Neurophysiol 55:1–5

    Google Scholar 

  44. Voronel A, Veliyulin E, Machavariani VS, Kisliuk A, Quitmann D (1998) Fractional Stokes-Einstein law for ionic transport in liquids. Phys Rev Lett 80(12):2630–2633

    Article  CAS  Google Scholar 

  45. Wen P, Li Y (2006) EEG human head modelling based on heterogeneous tissue conductivity. Australas Phys Eng S 29(3):235–240

    Article  CAS  Google Scholar 

  46. Ma W, Demonte TP, Nachman AI, Elsaid NMH (2013) Experimental implementation of a new method of imaging anisotropic electric conductivities. In: 35th Annual international conference of the IEEE EMBS, July 3–7, Osaka

  47. Sen AK, Torquato S (1989) Effective conductivity of anisotropic two-phase composite media. Phys Rev B 39(7):4504–4515

    Article  CAS  Google Scholar 

  48. Torquato S, Sen AK (1990) Conductivity tensor of anisotropic composite media from the microstructure. J Appl Phys 67(3):1145–1155

    Article  CAS  Google Scholar 

  49. Tuch DS, Reese TG, Wiegell MR, Wedeen VJ (2003) Diffusion MRI of complex neural architecture. Neuron 40:885–895

    Article  PubMed  CAS  Google Scholar 

  50. Wu ZX, Gao MY, Zhu SA (2011) A survey on brain tissues anisotropic conductivity model based on diffusion tensor imaging. Acta Bioph Sin 27(6):491–499

    CAS  Google Scholar 

Download references

Funding

This research work was supported by the Natural Science Foundation of Zhejiang Province (project number LY17E070007) and the National Natural Science Foundation of China (project number 51207038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liu, Y., Hong, M. et al. A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging. Med Biol Eng Comput 56, 1325–1332 (2018). https://doi.org/10.1007/s11517-018-1845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1845-9

Keywords