Abstract
Purpose
The development of common ontologies has recently been identified as one of the key challenges in the emerging field of surgical data science (SDS). However, past and existing initiatives in the domain of surgery have mainly been focussing on individual groups and failed to achieve widespread international acceptance by the research community. To address this challenge, the authors of this paper launched a European initiative—OntoSPM Collaborative Action—with the goal of establishing a framework for joint development of ontologies in the field of SDS. This manuscript summarizes the goals and the current status of the international initiative.
Methods
A workshop was organized in 2016, gathering the main European research groups having experience in developing and using ontologies in this domain. It led to the conclusion that a common ontology for surgical process models (SPM) was absolutely needed, and that the existing OntoSPM ontology could provide a good starting point toward the collaborative design and promotion of common, standard ontologies on SPM.
Results
The workshop led to the OntoSPM Collaborative Action—launched in mid-2016—with the objective to develop, maintain and promote the use of common ontologies of SPM relevant to the whole domain of SDS. The fundamental concept, the architecture, the management and curation of the common ontology have been established, making it ready for wider public use.
Conclusion
The OntoSPM Collaborative Action has been in operation for 24 months, with a growing dedicated membership. Its main result is a modular ontology, undergoing constant updates and extensions, based on the experts’ suggestions. It remains an open collaborative action, which always welcomes new contributors and applications.
Similar content being viewed by others
Notes
Web Ontology Language: https://www.w3.org/TR/owl2-overview/.
Ontofox tool: http://ontofox.hegroup.org.
OntoSPM wiki: https://ontospm.univ-rennes1.fr/doku.php.
References
Annals of Surgery—Instructions for Authors. http://edmgr.ovid.com/annsurg/accounts/ifauth.htm. Accessed 6 Dec 2017
IEEE standard 1872–2015—Ontologies for Robotics and Automation (2015) IEEE Robotics and Automation Society. https://doi.org/10.1109/IEEESTD.2015.7084073
Bieck R, Heuermann K, Schmidt M, Schmitgen A, Arnold S, Dietz A, Thomas N (2016) Towards an information presentation model of a situation-aware navigation system in functional endoscopic sinus surgery. In: 15. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie, CURAC2016. Bern, Switzerland
Blencowe NS, Mills N, Cook JA, Donovan JL, Rogers CA, Whiting P, Blazeby JM (2016) Standardizing and monitoring the delivery of surgical interventions in randomized clinical trials. Br J Surg 103(10):1377–1384. https://doi.org/10.1002/bjs.10254
Bonjer HJ, Deijen CL, Abis GA, Cuesta MA, van der Pas MH, de Lange-de Klerk ES, Lacy AM, Bemelman WA, Andersson J, Angenete E, Rosenberg J, Fuerst A, Haglind E (2015) A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med 372(14):1324–1332. https://doi.org/10.1056/NEJMoa1414882
Carbonera JL, Fiorini SR, Prestes E, Jorge VAM, Abel M, Madhavan R, Locoro A, Gonçalves P, Haidegger T, Barreto ME, Schlenoff C (2013) Defining positioning in a core ontology for robotics. In: The IEEE/RSJ international conference on intelligent robots and systems, IROS 2013, Tokyo, Japan. https://doi.org/10.1109/IROS.2013.6696603
Claude G, Gouranton V, Caillaud B, Gibaud B, Arnaldi B, Jannin P (2016) Synthesis and simulation of surgical process models. In: Medicine meets virtual reality 22, MMVR22, Los Angeles, USA. https://doi.org/10.3233/978-1-61499-625-5-63
Courtot M, Gibson F, Lister AL, Malone J, Schober D, Brinkman RR, Ruttenberg A (2009) MIREOT: the minimum information to reference an external ontology term. In: International conference on biomedical ontology, ICBO 2009, Buffalo, NY, USA. https://doi.org/10.1038/npre.2009.3576.1
De Angelis C, Drazen JM, Frizelle FA, Haug C, Hoey J, Horton R, Kotzin S, Laine C, Marusic A, Overbeke AJP, Schroeder TV, Sox HC, Weyden MBVD (2004) Clinical trial registration: a statement from the international committee of medical journal editors. N Engl J Med 351(12):1250–1251. https://doi.org/10.1056/NEJMe048225
Doran P, Tamma V, Iannone L (2007) Ontology module extraction for ontology reuse: an ontology engineering perspective. In: The 16th ACM conference on information and knowledge management, CIKM ’07, Lisbon, Portugal. https://doi.org/10.1145/1321440.1321451
Fetzer A, Metzger J, Katić D, März K, Wagner M, Philipp P, Engelhardt S, Weller T, Zelzer S, Franz AM, Schoch N, Heuveline V, Maleshkova M, Rettinger A, Speidel S, Wolf I, Kenngott H, Mehrabi Arianeb Müller-Stich BP, Maier-Hein Lena Meinzer HP, Nolden M (2016) Towards an open-source semantic data infrastructure for integrating clinical and scientific data in cognition-guided surgery. In: SPIE medical imaging, San Diego, CA, USA. https://doi.org/10.1117/12.2217163
Forestier G, Lalys F, Riffaud L, Collins DL, Meixensberger J, Wassef SN, Neumuth T, Goulet B, Jannin P (2013) Multi-site study of surgical practice in neurosurgery based on surgical process models. J Biomed Inform 46(5):822–829. https://doi.org/10.1016/j.jbi.2013.06.006
Franke S, Neumuth T (2015) Rule-based medical device adaptation for the digital operating room. In: The 37th international conference of the IEEE engineering in medicine and biology society, EMBC’15, Milan, Italy. https://doi.org/10.1109/EMBC.2015.7318712
Gallagher AG, O’Sullivan GC (2012) Fundamentals of surgical simulation: principles and practice. Springer, London. https://doi.org/10.1007/978-0-85729-763-1
Garraud C, Gibaud B, Penet C, Cazuguel Dardenne G Jannin P (2014) An ontology-based software for the analysis of surgical process model. In: Computer-assisted medical interventions: scientific problems, tools and clinical applications, Surgetica, Chambery, France
Gibaud B, Garfagni H, Aubry F, Pokropek AT, Chameroy V, Bizais Y, Di Paola R (1988) Standardization in the field of medical image management: the contribution of the MIMOSA model. IEEE Trans Med Imaging 17(1):62–73. https://doi.org/10.1109/42.668695
Gibaud B, Penet C, Jannin P (2014) OntoSPM: a core ontology of surgical procedure models. In: Computer-assisted medical interventions: scientific problems, tools and clinical applications, Surgetica, Chambery, France
Gkoutos GV, Schofield PN, Hoehndorf R (2012) The units ontology: a tool for integrating units of measurement in science. Database 2012:1–7. https://doi.org/10.1093/database/bas033
Gonçalves PJS (2016) Ontologies applied to surgical robotics. In: Second Iberian robotics conference, Robot’2015, Lisbon, Portugal. https://doi.org/10.1007/978-3-319-27149-1_37
Gonçalves PJS, Torres PMB (2015) Knowledge representation applied to robotic orthopedic surgery. Robot Comput Integr Manuf 33:90–99. https://doi.org/10.1016/j.rcim.2014.08.014
Gonçalves PJS, Torres PMB, Santos F, António R, Catarino N, Martins JMM (2015) A vision system for robotic ultrasound guided orthopaedic surgery. J Intell Robot Syst 77(2):327–339. https://doi.org/10.1007/s10846-013-0012-7
Haidegger T, Barreto M, Gonçalves P, Habib MK, Ragavan SKV, Li H, Vaccarella A, Perrone R, Prestes E (2013) Applied ontologies and standards for service robots. Robot Auton Syst 61(11):1215–1223. https://doi.org/10.1016/j.robot.2013.05.008
Haidegger T (2012) Standardization efforts in medical robotics. In: Modular surgical robotics: how can we make it possible? Eurosurge, Saint Paul, MN, USA
Heilbrun ME (2013) Evaluating radlex and real world radiology reporting: are we there yet? J Acad Radio 20(11):1327–1328. https://doi.org/10.1016/j.acra.2013.09.011
Heim E, Seitel A, Isensee F, Andrulis J, Stock C, Ross T, Maier-Hein L (2017) Clickstream analysis for crowd-based object segmentation with confidence. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2017.2777967
Horrocks I (2008) Ontologies and the semantic web. Commun ACM 51(12):58–67. https://doi.org/10.1145/1409360.1409377
Huaulmé A, Voros S, Riffaud L, Forestier G, Moreau-Gaudry A, Jannin P (2017) Distinguishing surgical behavior by sequential pattern discovery. J Biomed Inform 67:34–41. https://doi.org/10.1016/j.jbi.2017.02.001
Hüttner F, Doerr-Harim C, Probst P, Tenckhoff S, Knebel P, Diener M (2014) Study methods in evidence-based surgery: methodological impediments and suggested approaches for the creation and transfer of knowledge in surgery. Eur Surg Res 53(1–4):86–94. https://doi.org/10.1159/000366201
Jannin P, Morandi X (2007) Surgical models for computer-assisted neurosurgery. Neuroimage 37(1):783–791. https://doi.org/10.1016/j.neuroimage.2007.05.034
Jannin P, Raimbault M, Morandi X, Riffaud L, Gibaud B (2003) Model of surgical procedures for multimodal image-guided neurosurgery. J Comput Aided Surg 8(2):98–106
Joyce JP, Lapinsky GW (1983) A history and overview of the safety parameter display system concept. IEEE Trans Nucl Sci 30(1):744–749. https://doi.org/10.1109/TNS.1983.4332369
Katić D, Julliard C, Wekerle AL, Kenngott H, Müller-Stich BP, Dillmann R, Speidel S, Jannin P, Gibaud B (2015) LapOntoSPM: an ontology for laparoscopic surgeries and its application to surgical phase recognition. Int J Comput Assist Radiol Surg 10(9):1427–1434. https://doi.org/10.1007/s11548-015-1222-1
Katić D, Maleshkova M, Engelhardt S, Wolf I, März K, Maier-Hein L, Nolden M, Wagner M, Kenngott H, Mller-Stich BP, Dillmann R, Speidel S (2016) What does it all mean? Capturing semantics of surgical data and algorithms with ontologies. In: Surgical data science workshop, Heidelberg, Germany
Katić D, Schuck J, Wekerle AL, Kenngott H, Müller-Stich BP, Dillmann R, Speidel S (2016) Bridging the gap between formal and experience-based knowledge for context-aware laparoscopy. Int J Comput Assist Radiol Surg 11(6):881–888. https://doi.org/10.1007/s11548-016-1379-2
Katić D, Wekerle AL, Görtler J, Spengler P, Bodenstedt S, Röhl S, Suwelack S, Kenngott HG, Wagner M, Müller-Stich BP, Dillmann R, Speidel S (2013) Context-aware augmented reality in laparoscopic surgery. Comput Med Imaging Gr 37(2):174–182. https://doi.org/10.1016/j.compmedimag.2013.03.003
Kowalewski KF, Hendrie JD, Schmidt MW, Garrow CR, Bruckner T, Proctor T, Paul S, Adigüzel D, Bodenstedt S, Erben A, Kenngott H, Erben Y, Speidel S, Müller-Stich BP, Nickel F (2017) Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon. Surg Endosc 31(5):2155–2165. https://doi.org/10.1007/s00464-016-5213-2
Kowalewski KF, Hendrie JD, Schmidt MW, Proctor T, Paul S, Garrow CR, Kenngott HG, Müller-Stich BP, Nickel F (2017) Validation of the mobile serious game application Touch Surgery for cognitive training and assessment of laparoscopic cholecystectomy. Surg Endosc 31(10):4058–4066. https://doi.org/10.1007/s00464-017-5452-x
Lalys F, Jannin P (2014) Surgical process modelling: a review. Int J Comput Assist Radiol Surg 9(3):495–511. https://doi.org/10.1007/s11548-013-0940-5
Lougheed M, Wasilewski N, Morra A, Minard J (2018) Use of SNOMED CT and LOINC to standardize terminology for primary care asthma electronic health records. J Asthma 55(6):629–639. https://doi.org/10.1080/02770903.2017.1362424
Maier-Hein L, Mersmann S, Kondermann D, Bodenstedt S, Sanchez A, Stock C, Kenngott HG, Eisenmann M, Speidel S (2014) Can masses of non-experts train highly accurate image classifiers? In: Medical image computing and computer-assisted intervention MICCAI 2014, lecture notes in computer science. Springer, Cham. https://doi.org/10.1007/978-3-319-10470-6_55
Maier-Hein L, Ross T, Gröhl J, Glocker B, Bodenstedt S, Stock C, Heim E, Götz M, Wirkert S, Kenngott H, Speidel S, Maier-Hein K (2016) Crowd-algorithm collaboration for large-scale endoscopic image annotation with confidence. In: Medical image computing and computer-assisted intervention MICCAI 2016, lecture notes in computer science. Springer, Cham
Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, März K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691–696. https://doi.org/10.1038/s41551-017-0132-7
März K, Hafezi M, Weller T, Saffari A, Nolden M, Fard N, Majlesara A, Zelzer S, Maleshkova M, Volovyk M, Gharabaghi N, Wagner M, Emami G, Engelhardt S, Fetzer A, Kenngott H, Rezai N, Rettinger A, Studer R, Mehrabi A, Maier-Hein L (2015) Toward knowledge-based liver surgery: holistic information processing for surgical decision support. Int J Comput Assist Radiol Surg 10(6):749–759. https://doi.org/10.1007/s11548-015-1187-0
Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A (2003) WonderWeb Deliverable D18. The ontology library, Laboratory For Applied Ontology - ISTC-CNR
Mechouche A, Morandi X, Golbreich C, Gibaud B (2009) A hybrid system using symbolic and numeric knowledge for the semantic annotation of sulco-gyral anatomy in brain MRI images. IEEE Trans Med Imaging 28(8):1165–1178. https://doi.org/10.1109/TMI.2009.2026746
Morineau T, Morandi X, Le Moëllic N, Diabira S, Riffaud L, Haegelen C, Hénaux PL, Jannin P (2009) Decision making during preoperative surgical planning. Hum Factors 51(1):67–77. https://doi.org/10.1177/0018720809332847
Mudunuri R, Burgert O, Neumuth T (2009) Ontological modelling of surgical knowledge. In: Jahrestagung der Gesellschaft für Informatik. Springer, Lübeck, Germany. https://doi.org/10.1007/s11548-007-0114-4
Mudunuri R, Neumuth T, Strauß G, Dietz A, Meixensberger J, Burgert O (2007) SOCAS: surgical ontologies for computer assisted surgery. In: The 21th international congress and exhibition on computer assisted radiology and surgery, CARS 2007, Berlin, Germany. https://doi.org/10.1007/s11548-007-0114-4
Mungall C, Gkoutos G, Washington N, Lewis S (2007) Representing phenotypes in OWL. In: Workshop on OWL: experiences and directions, OWLED 2007, Innsbruck, Austria
Nakawala H, Ferrigno G, de Momi E (2017) Toward a knowledge-driven context-aware system for surgical assistance. J Med Robot Res 2(3):1740007. https://doi.org/10.1142/S2424905X17400074
Nakawala H, de Momi E, Pescatori LE, Morelli A, Ferrigno G (2017) Inductive learning of the surgical workflow model through video annotations. In: The IEEE 30th international symposium on computer-based medical systems, CBMS 2017, Thessaloniki, Greece. https://doi.org/10.1109/CBMS.2017.91
Neuhaus F, Vizedom A, Baclawski K, Bennett M, Dean M, Denny M, Grüninger M, Hashemi A, Longstreth T, Obrst L, Ray S, Sriram R, Schneider T, Vegetti M, West M, Yim P (2013) Towards ontology evaluation across the life cycle: the ontology summit 2013. Appl Ontol 8(3):179–194. http://dl.acm.org/citation.cfm?id=2594763.2594765
Neumann J, Schreiber E, Neumuth T (2016) Ontology-based surgical process modeling by using SNOMED CT concepts and concept model attributes. In: The 30th international congress and exhibition on computer assisted radiology and surgery, CARS 2016, Heidelberg, Germany. https://doi.org/10.1007/s11548-016-1412-5
Neumuth D, Loebeb F, Herre H, Neumuth T (2011) Modeling surgical processes: a four-level translational approach. Artif Intell Med 51(3):147–161. https://doi.org/10.1016/j.artmed.2010.12.003
Neumuth T, Czygan M, Goldstein D, Strauß G, Meixensberger J, Burgert O (2009) Computer assisted acquisition of surgical process models with a sensor-driven ontology. In: The first workshop on modeling and monitoring of computer assisted interventions, M2CAI, London, UK
Neumuth T, Jannin P, Schlomberg J, Meixensberger J, Wiedemann P, Burgert O (2011) Analysis of surgical intervention populations using generic surgical process models. Int J Comput Assist Radiol Surg 6(1):59–72. https://doi.org/10.1007/s11548-010-0475-y
Neumuth T, Jannin P, Strauß G, Meixensberger J, Burgert O (2009) Validation of knowledge acquisition for surgical process models. J Am Med Inform Assoc 16(1):72–80. https://doi.org/10.1197/jamia.M2748
Neumuth T, Kaschek B, Neumuth D, Ceschia M, Meixensberger J, Strauß G, Burgert O (2010) An observation support system with an adaptive ontology-driven user interface for the modeling of complex behaviors during surgical interventions. Behav Res Methods 42(4):1049–1058. https://doi.org/10.3758/BRM.42.4.1049
Neumuth T, Strauß G, Meixensberger J, Lemke HU, Burgert O (2006) Acquisition of process descriptions from surgical interventions. In: International conference on database and expert systems applications, DEXA 2006, Kraków, Poland. https://doi.org/10.1007/11827405_59
Pease A, Niles I, Li J (2002) The suggested upper merged ontology: a large ontology for the semantic web and its application. In: AAAI-2002 workshop on ontologies and the semantic web, Edmonton, AB, Canada
Perrone R, Nessi F, de Momi E, Boriero F, Capiluppi M, Fiorini P, Ferrigno G (2014) Ontology-based modular architecture for surgical autonomous robots. In: The Hamlyn symposium on medical robotics, London, UK
Philipp P, Maleshkova M, Katić D, Weber C, Götz M, Rettinger A, Speidel S, Kämpgen B, Nolden M, Wekerle AL, Dillmann R, Kenngott H, Müller-Stich BP, Studer R (2016) Toward cognitive pipelines of medical assistance algorithms. Int J Comput Assist Radiol Surg 11(9):1743–1753. https://doi.org/10.1007/s11548-015-1322-y
Prestes E, Carbonera JL, Rama Fiorini S, Jorge VA, Abel M, Madhavan R, Locoro A, Gonćalves P, Barreto ME, Habib M, Chibani A, Gérard S, Amirat Y, Schlenoff C (2013) Towards a core ontology for robotics and automation. Robot Auton Syst 61(11):1193–1204. https://doi.org/10.1016/j.robot.2013.04.005
Reiley CE, Hager GD (2009) Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. In: Medical image computing and computer-assisted intervention, MICCAI 2009, London, UK. https://doi.org/10.1007/978-3-642-04268-3_54
Riffaud L, Neumuth T, Morandi X, Trantakis C, Meixensberger J, Burgert O, Trelhu B, Jannin P (2010) Recording of surgical processes: a study comparing senior and junior neurosurgeons during lumbar disc herniation surgery. Oper Neurosurg 67(suppl 2):ons325. https://doi.org/10.1227/NEU.0b013e3181f741d7
Rodríguez-Sanjuán JC, Gómez-Ruiz M, Trugeda-Carrera S, Manuel-Palazuelos C, López-Useros A, Gómez-Fleitas M (2016) Laparoscopic and robot-assisted laparoscopic digestive surgery: present and future directions. World J Gastroenterol 22(6):1975–2004. https://doi.org/10.3748/wjg.v22.i6.1975
Rosse C, Mejino JL Jr (2003) A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform 36(6):478–500. https://doi.org/10.1016/j.jbi.2003.11.007
Schlenoff CI, Prestes E, Madhavan R, Gonçalves P, Li H, Balakirsky SB, Kramer TR, Miguelanez E (2012) An IEEE standard ontology for robotics and automation. In: The IEEE/RSJ international conference on intelligent robots and systems, IROS 2012, Vilamoura, Portugal. https://doi.org/10.1109/IROS.2012.6385518
Schmidt G (2016) Visualizing knowledge-based liver tumor treatment planning. Ph.D. thesis, University Koblenz - Landau
Schofield PN, Gruenberge M, Sundberg JP (2010) Pathbase and the MPATH ontology: community resources for mouse histopathology. Vet Pathol 47(6):1016–1020. https://doi.org/10.1177/0300985810374845
Schulz KF, Altman DG, Moher D, Fergusson D (2010) CONSORT 2010 changes and testing blindness in RCTs. The Lancet 375(9721):3–9. https://doi.org/10.1016/S0140-6736(10)60456-4
Schulz S, Jansen L (2013) Formal ontologies in biomedical knowledge representation. Yearb Med Inform 22(1):132–146. https://doi.org/10.1055/s-0038-1638845
Siemoleit S, Uciteli A, Bieck R, Herre H (2017) Ontological modelling of situational awareness in surgical interventions. In: Proceedings of the joint ontology workshops (JOWO) 2017, episode 3: the Tyrolean autumn of ontology. CEUR workshop proceedings, vol 2050, Aachen, 2018, Bolzano, Italy
Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ, The OBI Consortium, Leontis N, Rocca-Serra P, Ruttenberg A, Sansone SA, Scheuermann RH, Shah N, Whetzel PL, Lewis S (2007) The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25:1251–1255. https://doi.org/10.1038/nbt1346
Smith B, Ceusters W, Ruttenberg A (2009) From basic formal ontology to the information artifact ontology. In: International conference on biomedical ontology, ICBO 2009, Buffalo, NY, USA
Smith B, Kumar A, Bittner T (2005) Basic formal ontology for bioinformatics. Technical report, Institute for Formal Ontology and Medical Information Science, Saarland University, Saarbrücken, Germany
Spyns P, Tang Y, Meersman R (2008) An ontology engineering methodology for DOGMA. Appl Ontol 3(1–2):13–39. https://doi.org/10.3233/AO-2008-0047
Sure Y, Angele J, Staab S (2002) OntoEdit: guiding ontology development by methodology and inferencing. In: On the move to meaningful internet systems 2002: CoopIS, DOA, and ODBASE, OTM 2002, Irvine, CA, USA. https://doi.org/10.1007/3-540-36124-3_76
Temal L, Dojat M, Kassel G, Gibaud B (2008) Towards an ontology for sharing medical images and regions of interest in neuroimaging. J Biomed Inform 41(5):766–778. https://doi.org/10.1016/j.jbi.2008.03.002
Tenorth M, Beetz M (2013) KnowRob: a knowledge processing infrastructure for cognition-enabled robots. Int J Robot Res 32(5):566–590. https://doi.org/10.1177/0278364913481635
Torres PMB, Gonçalves PJS, Martins JMM (2015) Robotic motion compensation for bone movement, using ultrasound images. Ind Robot Int J 42(5):466–474. https://doi.org/10.1108/IR-12-2014-0435
Wang AY, Sable JH, Spackman KA (2002) The SNOMED clinical terms development process: refinement and analysis of content. In: Proceedings of the AMIA symposium, San Antonio, TX, USA
Xiang Z, Courtot M, Brinkman RR, Ruttenberg A, He Y (2010) Ontofox: web-based support for ontology reuse. BMC Res Notes 3(1):175. https://doi.org/10.1186/1756-0500-3-175
Acknowledgements
This work was initiated in the context of the S3PM project which received a French government support granted to the CominLabs excellence laboratory and managed by the National Research Agency in the ”Investing for the Future” program under reference ANR-10-LABX-07-01. The work on ontological modeling at the DKFZ is supported by the Federal Ministry of Economics and Energy (BMWi) and the German Aerospace Center (DLR). The work on ontological modeling at Politecnico (Milano) has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement No. H2020-ICT-2016-732515. It was also partly supported by Instituto Politecnico de Castelo Branco and by FCT, through IDMEC, under LAETA, project UID/EMS/50022/2013. T. Haidegger is supported through the New National Excellence Program of the Ministry of Human Capacities, his research was partially supported by the Hungarian OTKA PD 116121 grant. This work has been partially supported by ACMIT (Austrian Center for Medical Innovation and Technology), which is funded within the scope of the COMET (Competence Centers for Excellent Technologies) program of the Austrian Government. We acknowledge the financial support of this work by the Hungarian State and the European Union under the EFOP-3.6.1-16-2016-00010 project. The work at ICCAS was funded by the German Ministry of Education and Research (BMBF).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Human and animal rights
This article does not contain any studies with human participants or animal performed by any of the authors.
Informed consent
Statement of informed consent was not applicable since the manuscript does not contain any patient data.
Rights and permissions
About this article
Cite this article
Gibaud, B., Forestier, G., Feldmann, C. et al. Toward a standard ontology of surgical process models. Int J CARS 13, 1397–1408 (2018). https://doi.org/10.1007/s11548-018-1824-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-018-1824-5