Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ab-initio Study of the Electron Mobility in a Functionalized UiO-66 Metal Organic Framework

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study leverages density functional theory accompanied with Boltzmann transport equation approaches to investigate the electronic mobility as a function of inorganic substitution and functionalization in a thermally stable UiO-66 metal-organic framework (MOF). The MOFs investigated are based on Zr-UiO-66 MOF with three functionalization groups of benzene dicarboxylate (BDC), BDC functionalized with an amino group (\(\hbox {BDC} + \hbox {NH}_2\)) and a nitro group (\(\hbox {BDC} + \hbox {NO}_2\)). The design space of this study is bound by UiO-66(M)-R, [\(\hbox {M}=\hbox {Zr}\), Ti, Hf; \(\hbox {R}=\hbox {BDC}\), \(\hbox {BDC}+\hbox {NO}_2\), \(\hbox {BDC}+\hbox {NH}_2\)]. The elastic modulus was not found to vary significantly over the structural modification of the design space for either functionalization or inorganic substitution. However, the electron–phonon scattering potential was found to be controllable by up to 30% through controlled inorganic substitution in the metal clusters of the MOF structure. The highest electron mobility was predicted for a UiO-66(\(\hbox {Hf}_5\hbox {Zr}_1\)) achieving a value of approximately \(1.4\times 10^{-3}\,\hbox {cm}^2\)/V s. It was determined that functionalization provides a controlled method of modulating the charge density, while inorganic substitution provides a controlled method of modulating the electronic mobility. Within the proposed design space the electrical conductivity was able to be increased by approximately three times the base conductivity through a combination of inorganic substitution and functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Yang, E. Ganz, S. Svelle, and M. Tilset, J. Mater. Chem. C 2, 7111 (2014).

    Article  Google Scholar 

  2. L. Shen, R. Liang, M. Luo, F. Jing, and L. Wu, Phys. Chem. Chem. Phys. 17, 117 (2015).

    Article  Google Scholar 

  3. Y. Lee, S. Kim, J.K. Kang, and S.M. Cohen, Chem. Commun. 51, 5735 (2015).

    Article  Google Scholar 

  4. P. Canepa, N. Nijem, Y.J. Chabal, and T. Thonhauser, Phys. Rev. Lett. 110, 026102 (2013).

    Article  Google Scholar 

  5. K. Tan, P. Canepa, Q. Gong, J. Liu, D.H. Johnson, A. Dyevoich, P.K. Thallapally, T. Thonhauser, J. Li, and Y.J. Chabal, Chem. Mater. 25(23), 4653 (2013).

    Article  Google Scholar 

  6. S. Wang and X. Wang, Small 11(26), 3097 (2015).

    Article  Google Scholar 

  7. T. Musho and N. Wu, Phys. Chem. Chem. Phys. 17, 26160 (2015).

    Article  Google Scholar 

  8. L. Hailian, E. Mohamed, M. O’Keeffe, and O.M. Yaghi, Nature 402(6759), 279 (1999).

    Article  Google Scholar 

  9. A.S. Yasin, J. Li, N. Wu, and T. Musho, Phys. Chem. Chem. Phys. 18(18), 12748 (2016).

    Article  Google Scholar 

  10. L. Sun, C.H. Hendon, M.A. Minier, A. Walsh, and M. Dinc, J. Am. Chem. Soc. 137(19), 6164 (2015).

    Article  Google Scholar 

  11. T.C. Narayan, T. Miyakai, S. Seki, and M. Dinca, J. Am. Chem. Soc. 134(31), 12932 (2012).

    Article  Google Scholar 

  12. A. Saeki, Y. Koizumi, T. Aida, and S. Seki, Acc. Chem. Res. 45(8), 1193 (2012).

    Article  Google Scholar 

  13. J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, and X. Wang, Chem. Commun. 48, 11656 (2012).

    Article  Google Scholar 

  14. T. Musho, J. Li, and N. Wu, Phys. Chem. Chem. Phys. 16, 23646 (2014). https://doi.org/10.1039/C4CP03110E

    Article  Google Scholar 

  15. Y. Kobayashi, B. Jacobs, M.D. Allendorf, and J.R. Long, Chem. Mater. 22(14), 4120 (2010).

    Article  Google Scholar 

  16. M.H. Zeng, Q.X. Wang, Y.X. Tan, S. Hu, H.X. Zhao, L.S. Long, and M. Kurmoo, J. Am. Chem. Soc. 132(8), 2561 (2010).

    Article  Google Scholar 

  17. H. Motegi, K. Yano, N. Setoyama, Y. Matsuoka, T. Ohmura, and A. Usuki, J. Porous Mater. 24(5), 1327 (2017).

    Article  Google Scholar 

  18. C. Caratelli, J. Hajek, F.G. Cirujano, M. Waroquier, F.X.L. i Xamena, and V. Van Speybroeck. J. Catal. 352, 401 (2017)

    Article  Google Scholar 

  19. S.T. Gao, W. Liu, C. Feng, N.Z. Shang, and C. Wang, Catal. Sci. Technol. 6(3), 869 (2016).

    Article  Google Scholar 

  20. D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, and Z. Li, Chem. A Eur. J. 19(42), 14279 (2013).

    Article  Google Scholar 

  21. F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, et al., J. Am. Chem. Soc. 135(31), 11465 (2013).

    Article  Google Scholar 

  22. G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, and K.P. Lillerud, Chem. Mater. 28(11), 3749 (2016).

    Article  Google Scholar 

  23. C.H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. Darras, C. Sassoye, L. Rozes, C. Mellot-Draznieks, and A. Walsh, J. Am. Chem. Soc. 135(30), 10942 (2013).

    Article  Google Scholar 

  24. N.J. Tao, Nat Nano 1(3), 173 (2006).

    Article  Google Scholar 

  25. S.S. Park, E.R. Hontz, L. Sun, C.H. Hendon, A. Walsh, T. Van Voorhis, and M. Dinc, J. Am. Chem. Soc. 137(5), 1774 (2015).

    Article  Google Scholar 

  26. C.K. Lin, D. Zhao, W.Y. Gao, Z. Yang, J. Ye, T. Xu, Q. Ge, S. Ma, and D.J. Liu, Inorg. Chem. 51(16), 9039 (2012).

    Article  Google Scholar 

  27. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Matter 21(39), 395502 (2009).

    Article  Google Scholar 

  28. S. Grimme, J. Comput. Chem. 27(15), 1787 (2006). https://doi.org/10.1002/jcc.20495

    Article  Google Scholar 

  29. V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and A. Vittadini, J. Comput. Chem. 30(6), 934 (2009). https://doi.org/10.1002/jcc.21112

    Article  Google Scholar 

  30. J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950). https://doi.org/10.1103/PhysRev.80.72

    Article  Google Scholar 

  31. S. Devautour-Vinot, G. Maurin, C. Serre, P. Horcajada, D. Paula da Cunha, V. Guillerm, E. de Souza Costa, F. Taulelle, and C. Martineau, Chem. Mater. 24(11), 2168 (2012).

    Article  Google Scholar 

  32. R. Warmbier, A. Quandt, and G. Seifert, J. Phys. Chem. C 118(22), 11799 (2014).

    Article  Google Scholar 

  33. A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, et al., Science 343(6166), 66 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence D. Musho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musho, T.D., Yasin, A.S. Ab-initio Study of the Electron Mobility in a Functionalized UiO-66 Metal Organic Framework. J. Electron. Mater. 47, 3692–3700 (2018). https://doi.org/10.1007/s11664-018-6220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6220-y

Keywords