Abstract
In swarm robotics systems, coordinated behaviors emerge via local interactions among the robots as well as between robots and the environment. For a swarm of robots performing a set of pre-defined tasks in an enclosed region, this paper develops a decentralized mechanism to allocate tasks to each robot by leveraging the spatial interactions occurring among the robots as they move around the domain. With the aim of achieving a desired percentage of the swarm performing each task, the developed strategy allows individual robots to switch between different tasks with a certain probability when they encounter other robots in the region. We develop an analytical model to describe the inter-robot encounters occurring in a densely packed swarm of robots using ideas from the Enskog theory of dense gases and illustrate how the swarm can leverage this model to achieve the desired allocation levels. Furthermore, the inter-robot encounters enable the robots to measure the current allocation of the swarm, which is then used to regulate the rate at which they switch between tasks. This allows the swarm to speed up or slow down the rate of transitions between tasks depending on how far the current allocation is from the desired values, ultimately facilitating uninterrupted task execution by the robots. The methods introduced in this paper illustrate how naturally occurring encounters among robots in a swarm can be used to allocate tasks to the robots in a closed-loop manner. The developed algorithm is completely decentralized and can be deployed on minimalistic robots without the need for communication or a central coordinator. The performance of the algorithm is demonstrated on a swarm of real robots.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agassounon, W., & Martinoli, A. (2002). Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems. In Proceedings of the first international joint conference on Autonomous agents and multiagent systems: part 3 (pp. 1090–1097), ACM.
Allen, M. P., Evans, G. T., Frenkel, D., & Mulder, B. (1993). Hard convex body fluids. Advances in Chemical Physics, 86(1), 166.
Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.
Atkins, P., & De Paula, J. (2011). Physical chemistry for the life sciences. New York: Oxford University Press.
Balinski, M. L. (1985). Signature methods for the assignment problem. Operations Research, 33(3), 527–536.
Berman, S., Halász, Á., & Hsieh, M. (2016). Ant-inspired allocation: Top-down controller design for distributing a robot swarm among multiple tasks (pp. 243–274). Boca Raton: CRC Press.
Berman, S., Halász, Á., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 25(4), 927–937. https://doi.org/10.1109/TRO.2009.2024997.
Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.
Bullock, S., Crowder, R., & Pitonakova, L. (2016). Task allocation in foraging robot swarms: The role of information sharing. In Proceedings of the European conference on artificial life (Vol. 13, pp. 306–313), MIT Press.
Chapman, S., & Cowling, T. G. (1970). The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge: Cambridge University Press.
Charbonneau, D., Sasaki, T., & Dornhaus, A. (2017). Who needs ‘lazy’workers? Inactive workers act as a ‘reserve’labor force replacing active workers, but inactive workers are not replaced when they are removed. PLoS ONE, 12(9), e0184074.
Cheah, C. C., Hou, S. P., & Slotine, J. J. E. (2009). Region-based shape control for a swarm of robots. Automatica, 45(10), 2406–2411.
Chiu, S. N., Stoyan, D., Kendall, W. S., & Mecke, J. (2013). Stochastic geometry and its applications. Hoboken: Wiley.
Cortes, J., Martinez, S., Karatas, T., & Bullo, F. (2004). Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2), 243–255.
Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.
Cutchis, P., Van Beijeren, H., Dorfman, J., & Mason, E. (1977). Enskog and van der Waals play hockey. American Journal of Physics, 45(10), 970–977.
Daley, D. J., & Vere-Jones, D. (2007). An introduction to the theory of point processes: Volume II: General theory and structure. New York: Springer.
Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE, 94(7), 1257–1270.
Ducatelle, F., Förster, A., Di Caro, G. A., & Gambardella, L. M. (2009). New task allocation methods for robotic swarms. In 9th IEEE/RAS conference on autonomous robot systems and competitions.
Einwohner, T., & Alder, B. (1968). Molecular dynamics. VI. Free-path distributions and collision rates for hard-sphere and square-well molecules. The Journal of Chemical Physics, 49(4), 1458–1473.
Fox, D., Thrun, S., Burgard, W., & Dellaert, F. (2001). Particle filters for mobile robot localization. In A. Doucet, N. De Freitas, & N. Gordon (Eds.), Sequential Monte Carlo methods in practice. Statistics for engineering and information science (pp. 401–428). New York, NY: Springer.
Franks, N. R., & Deneubourg, J. L. (1997). Self-organizing nest construction in ants: individual worker behaviour and the nest’s dynamics. Animal Behaviour, 54(4), 779–796.
Fukuda, T., Nakagawa, S., Kawauchi, Y., & Buss, M. (1988). Self organizing robots based on cell structures-CKBOT. In IEEE international workshop on intelligent robots 1988 (pp. 145–150). IEEE.
Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23(9), 939–954.
Goldberg, D., & Mataric, M. J. (1997). Interference as a tool for designing and evaluating multi-robot controllers. In Proceedings of AAAI-97 (pp. 637–642). AAAI Press.
Gordon, D. M. (1996). The organization of work in social insect colonies. Nature, 380, 14.
Gordon, D. M., & Mehdiabadi, N. J. (1999). Encounter rate and task allocation in harvester ants. Behavioral Ecology and Sociobiology, 45(5), 370–377. https://doi.org/10.1007/s002650050573.
Iocchi, L., Nardi, D., & Salerno, M. (2001). Reactivity and deliberation: A survey on multi-robot systems. In M. Hannebauer & J. Wendler (Eds.), Balancing reactivity and social deliberation in multi-agent systems (pp. 9–32). Berlin: Springer.
Jeans, J. (2009). An introduction to the kinetic theory of gases (p. 2009). Cambridge: Cambridge University Press.
Jones, C., & Mataric, M. J. (2003). Adaptive division of labor in large-scale minimalist multi-robot systems. In Proceedings 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (Cat. No. 03CH37453) (Vol. 2, pp. 1969–1974). IEEE.
Jordan, M. (1995). Why the logistic function? A tutorial discussion on probabilities and neural networks. Technical report, Massachusetts Institute of Technology.
Khamis, A., Hussein, A., & Elmogy, A. (2015). Multi-robot task allocation: A review of the state-of-the-art (pp. 31–51). Cham: Springer. https://doi.org/10.1007/978-3-319-18299-5_2.
Krieger, M. J., Billeter, J. B., & Keller, L. (2000). Ant-like task allocation and recruitment in cooperative robots. Nature, 406(6799), 992.
Labella, T. H., Dorigo, M., & Deneubourg, J. L. (2006). Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1(1), 4–25.
Lavancier, F., & Møller, J. (2016). Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets. Scandinavian Journal of Statistics, 43(2), 587–609.
Le Boudec, J. Y., McDonald, D., & Mundinger, J. (2007). A generic mean field convergence result for systems of interacting objects. In Fourth international conference on the quantitative evaluation of systems, 2007 (pp. 3–18). IEEE.
Lerman, K., Jones, C., Galstyan, A., & Matarić, M. J. (2006). Analysis of dynamic task allocation in multi-robot systems. The International Journal of Robotics Research, 25(3), 225–241.
Liu, Y., & Nejat, G. (2013). Robotic urban search and rescue: A survey from the control perspective. Journal of Intelligent & Robotic Systems, 72(2), 147–165.
Matérn, B. (2013). Spatial variation (Vol. 36). New York: Springer. https://doi.org/10.1007/978-0-387-96365-5.
Mather, T. W., & Ani Hsieh, M. (2011). Macroscopic modeling of stochastic deployment policies with time delays for robot ensembles. International Journal of Robotics Research, 30(5), 590–600.
Mayya, S., Pierpaoli, P., & Egerstedt, M. (2018). Voluntary retreat for decentralized interference reduction in robot swarms. arXiv:1812.02193
Mayya, S., Pierpaoli, P., Nair, G., & Egerstedt, M. (2017). Collisions as information sources in densely packed multi-robot systems under mean-field approximations. In Proceedings of robotics: Science and systems, Cambridge, Massachusetts. https://doi.org/10.15607/RSS.2017.XIII.044.
Mayya, S., Pierpaoli, P., Nair, G., & Egerstedt, M. (2019). Localization in densely packed swarms using interrobot collisions as a sensing modality. IEEE Transactions on Robotics, 35(1), 21–34.
Nam, C., & Shell, D. A. (2015). Assignment algorithms for modeling resource contention in multirobot task allocation. IEEE Transactions on Automation Science and Engineering, 12(3), 889–900.
Nunes, E., Manner, M., Mitiche, H., & Gini, M. (2017). A taxonomy for task allocation problems with temporal and ordering constraints. Robotics and Autonomous Systems, 90, 55–70.
Oster, G. F., & Wilson, E. O. (1979). Caste and ecology in the social insects. Princeton: Princeton University Press.
Paik, S. T. (2014). Is the mean free path the mean of a distribution? American Journal of Physics, 82(6), 602–608.
Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A., Feron, E., et al. (2017). The Robotarium: A remotely accessible swarm robotics research testbed. In IEEE international conference on robotics and automation (ICRA), 2017 (pp. 1699–1706). IEEE.
Pini, G., Brutschy, A., Birattari, M., & Dorigo, M. (2009). Interference reduction through task partitioning in a robotic swarm. In Sixth international conference on informatics in control, automation and robotics-ICINCO (pp. 52–59). INSTICC Press.
Pratt, S. C. (2005). Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behavioral Ecology, 16(2), 488–496.
Reif, F. (2009). Fundamentals of statistical and thermal physics. McGraw-Hill series in fundamentals of physics. Waveland Press. ISBN: 9781577666127.
Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. In E. Şahin & W. M. Spears (Eds.), Swarm robotics (pp. 10–20). Berlin: Springer.
Shell, D. A., Jones, C. V., & Matarić, M. J. (2005). Ergodic dynamics by design: A route to predictable multi-robot systems. In L. E. Parker, F. E. Schneider, & A. C. Schultz (Eds.), Multi-robot systems: From swarms to intelligent automata (Vol. III, pp. 291–297)., Springer Dordrecht: Netherlands.
Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1–2), 99–141.
Wang, L., Ames, A. D., & Egerstedt, M. (2017). Safety barrier certificates for collisions-free multirobot systems. IEEE Transactions on Robotics, 33(3), 661–674.
Zavlanos, M. M., Spesivtsev, L., & Pappas, G. J. (2008). A distributed auction algorithm for the assignment problem. In 47th IEEE conference on decision and control, 2008: CDC 2008 (pp. 1212–1217). IEEE.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This research was sponsored by Grants Nos. 1531195 and 1544332 from the U.S. National Science Foundation.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 58218 KB)
Rights and permissions
About this article
Cite this article
Mayya, S., Wilson, S. & Egerstedt, M. Closed-loop task allocation in robot swarms using inter-robot encounters. Swarm Intell 13, 115–143 (2019). https://doi.org/10.1007/s11721-019-00166-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11721-019-00166-x