Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Single image dehazing using kernel regression model and dark channel prior

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Haze is one of the major factors that degrade outdoor images, and dehazing becomes an important issue in many applications. In order to address the problems of being unsmooth and the absence of neighbor information for the transmission estimation under Dark Channel Prior (DCP) framework, we proposed a new improved method using Kernel Regression Model (KRM) on local neighbor data. Firstly, the initial transmission in atmospheric light model is estimated by DCP. Secondly, the transmission is refined according to KRM. Experimental results on synthetic and real images show that our method can address this problem and has better dehazing results than several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao, Y., Hua, H.M., Wang, S.: A fast image dehazing algorithm based on negative correction. Signal Process. 103, 380–398 (2014). doi:10.1016/j.sigpro.2014.02.016

    Article  Google Scholar 

  2. Sun, W.: A new single-image fog removal algorithm based on physical model. Optik 124(21), 4770–4775 (2013). doi:10.1016/j.ijleo.2013.01.097

    Article  Google Scholar 

  3. Tan, K., Oakley, J.P.: Physics-based approach to color image enhancement in poor visibility conditions. J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 18(10), 2460–2467 (2001). doi:10.1364/JOSAA.18.002460

    Article  Google Scholar 

  4. Hautière, N., Tarel, J.P., Auber, D.: Towards fog-free in-vehicle vision systems through contrast restoration. In: Proceedings of IEEE conference on CVPR, Minneapolis. IEEE, pp. 1–8 (2007). doi:10.1109/CVPR.2007.383259

  5. Kopf, J., Neubert, B., Chen, B.: Deep photo: model based photograph enhancement and viewing. ACM TransGraph 27(5), 116 (2008). doi:10.1145/1457515.1409069

    Google Scholar 

  6. Tripathi, A.K., Mukhopadhyay, S.: Efficient fog removal from video. Signal Image Video Process. 8(8), 1431–1439 (2014). doi:10.1007/s11760-012-0377-2

    Article  Google Scholar 

  7. Tan, R.T. : Visibility in bad weather from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, pp. 1–8 (2008).doi:10.1109/CVPR.2008.4587643

  8. Fattal, R.: Single image dehazing. In SIGGRAPH 27(3), 1–9 (2008). doi:10.1145/1360612.1360671

    Article  Google Scholar 

  9. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: Proceedings of IEEE Conference on CVPR, Miami 2009, pp. 1956–1963 (2009). doi:10.1109/CVPRW.5206515

  10. Li, J., Zhang, H., Yuan, D.: Single image dehazing using the change of detail prior. Neurocomputing 156, 1–11 (2015). doi:10.1016/j.neucom.2015.01.026

    Article  Google Scholar 

  11. Ling, Z., Li, S., Wang, Y.: Adaptive transmission compensation via human visual system for efficient single image dehazing. Visual Comput 32(5), 653–662 (2015). doi:10.1007/s00371-015-1081-3

    Article  Google Scholar 

  12. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011). doi:10.1109/TPAMI.2010.168

  13. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013). doi:10.1109/TPAMI.2012.213

    Article  Google Scholar 

  14. Xie, C.H., Song, Y.Q., Chen, J.M.: Fast medical image mixture density clustering segmentation using stratification sampling and kernel density estimation. Signal Image Video Process. 5(2), 257–267 (2011). doi:10.1007/s11760-010-0159-7

    Article  Google Scholar 

  15. Li, Q., Jeffrey, S.R.: Nonparametric Econometrics: Theory and Practice. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  16. Chung, M.K., Qiu, A., Seo, S.: Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images. Med Image Anal 22(1), 63–76 (2015). doi:10.1016/j.media.2015.02.003

    Article  Google Scholar 

  17. Liu, W., Liu, H., Tao, D.: Manifold regularized kernel logistic regression for web image annotation. Neurocomputing 172(SI), 3–8 (2016). doi:10.1016/j.neucom.2014.06.096

    Article  Google Scholar 

  18. Li, Y., Tan, Y., Yu, J.G.: Kernel regression in mixed feature spaces for spatio-temporal saliency detection. Comput Vis. Image Underst. 135, 126–140 (2015). doi:10.1016/j.cviu.2015.01.011

    Article  Google Scholar 

  19. Ezequiel, L.R., María Nieves, F.N.: Kernel regression based feature extraction for 3D MR image denoising. Med. Image Anal. 15(4), 498–513 (2011). doi:10.1016/j.media.2011.02.006

    Article  Google Scholar 

  20. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int’l J. Comput. Vis. 48(3), 233–254 (2002). doi:10.1023/A:1016328200723

    Article  MATH  Google Scholar 

  21. Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis. Oxford University Press, London (1997)

    MATH  Google Scholar 

  22. Tang, K., Yang, J., Wang, J. : Investigating haze-relevant features in a learning framework for image dehazing. In: Proceedings of IEEE Conference on CVPR, pp. 2995–3002 (2014). doi:10.1109/CVPR.2014.383

  23. Wang, Z., Bovik, A.C., Sheikh, H.R.: Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 13(4), 600–612 (2004). doi:10.1109/TIP.2003.819861

    Article  Google Scholar 

  24. Matan, S., Itamar, G., Raanan, F.: Automatic recovery of the atmospheric light in hazy images. In: IEEE International Conference on Computational Photography, Santa Clara 2014, pp. 1–11 (2014). doi:10.1109/ICCPHOT.6831817

Download references

Acknowledgments

The authors of this paper wish to thank the referees for their valuable suggestions. This work is supported by the Science and Technology Program of suzhou in China under Grant No. SYG201409, Natural Science Foundation of Jiangsu Province in China (No. BK20130529), Natural Science Foundation of the Jiangsu Higher Education Institutions in China (No. 3KJB520001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Hua Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, CH., Qiao, WW., Liu, Z. et al. Single image dehazing using kernel regression model and dark channel prior. SIViP 11, 705–712 (2017). https://doi.org/10.1007/s11760-016-1013-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1013-3

Keywords