Abstract
Haze is one of the major factors that degrade outdoor images, and dehazing becomes an important issue in many applications. In order to address the problems of being unsmooth and the absence of neighbor information for the transmission estimation under Dark Channel Prior (DCP) framework, we proposed a new improved method using Kernel Regression Model (KRM) on local neighbor data. Firstly, the initial transmission in atmospheric light model is estimated by DCP. Secondly, the transmission is refined according to KRM. Experimental results on synthetic and real images show that our method can address this problem and has better dehazing results than several state-of-the-art methods.
Similar content being viewed by others
References
Gao, Y., Hua, H.M., Wang, S.: A fast image dehazing algorithm based on negative correction. Signal Process. 103, 380–398 (2014). doi:10.1016/j.sigpro.2014.02.016
Sun, W.: A new single-image fog removal algorithm based on physical model. Optik 124(21), 4770–4775 (2013). doi:10.1016/j.ijleo.2013.01.097
Tan, K., Oakley, J.P.: Physics-based approach to color image enhancement in poor visibility conditions. J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 18(10), 2460–2467 (2001). doi:10.1364/JOSAA.18.002460
Hautière, N., Tarel, J.P., Auber, D.: Towards fog-free in-vehicle vision systems through contrast restoration. In: Proceedings of IEEE conference on CVPR, Minneapolis. IEEE, pp. 1–8 (2007). doi:10.1109/CVPR.2007.383259
Kopf, J., Neubert, B., Chen, B.: Deep photo: model based photograph enhancement and viewing. ACM TransGraph 27(5), 116 (2008). doi:10.1145/1457515.1409069
Tripathi, A.K., Mukhopadhyay, S.: Efficient fog removal from video. Signal Image Video Process. 8(8), 1431–1439 (2014). doi:10.1007/s11760-012-0377-2
Tan, R.T. : Visibility in bad weather from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, pp. 1–8 (2008).doi:10.1109/CVPR.2008.4587643
Fattal, R.: Single image dehazing. In SIGGRAPH 27(3), 1–9 (2008). doi:10.1145/1360612.1360671
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: Proceedings of IEEE Conference on CVPR, Miami 2009, pp. 1956–1963 (2009). doi:10.1109/CVPRW.5206515
Li, J., Zhang, H., Yuan, D.: Single image dehazing using the change of detail prior. Neurocomputing 156, 1–11 (2015). doi:10.1016/j.neucom.2015.01.026
Ling, Z., Li, S., Wang, Y.: Adaptive transmission compensation via human visual system for efficient single image dehazing. Visual Comput 32(5), 653–662 (2015). doi:10.1007/s00371-015-1081-3
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011). doi:10.1109/TPAMI.2010.168
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013). doi:10.1109/TPAMI.2012.213
Xie, C.H., Song, Y.Q., Chen, J.M.: Fast medical image mixture density clustering segmentation using stratification sampling and kernel density estimation. Signal Image Video Process. 5(2), 257–267 (2011). doi:10.1007/s11760-010-0159-7
Li, Q., Jeffrey, S.R.: Nonparametric Econometrics: Theory and Practice. Princeton University Press, Princeton (2007)
Chung, M.K., Qiu, A., Seo, S.: Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images. Med Image Anal 22(1), 63–76 (2015). doi:10.1016/j.media.2015.02.003
Liu, W., Liu, H., Tao, D.: Manifold regularized kernel logistic regression for web image annotation. Neurocomputing 172(SI), 3–8 (2016). doi:10.1016/j.neucom.2014.06.096
Li, Y., Tan, Y., Yu, J.G.: Kernel regression in mixed feature spaces for spatio-temporal saliency detection. Comput Vis. Image Underst. 135, 126–140 (2015). doi:10.1016/j.cviu.2015.01.011
Ezequiel, L.R., María Nieves, F.N.: Kernel regression based feature extraction for 3D MR image denoising. Med. Image Anal. 15(4), 498–513 (2011). doi:10.1016/j.media.2011.02.006
Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int’l J. Comput. Vis. 48(3), 233–254 (2002). doi:10.1023/A:1016328200723
Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis. Oxford University Press, London (1997)
Tang, K., Yang, J., Wang, J. : Investigating haze-relevant features in a learning framework for image dehazing. In: Proceedings of IEEE Conference on CVPR, pp. 2995–3002 (2014). doi:10.1109/CVPR.2014.383
Wang, Z., Bovik, A.C., Sheikh, H.R.: Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 13(4), 600–612 (2004). doi:10.1109/TIP.2003.819861
Matan, S., Itamar, G., Raanan, F.: Automatic recovery of the atmospheric light in hazy images. In: IEEE International Conference on Computational Photography, Santa Clara 2014, pp. 1–11 (2014). doi:10.1109/ICCPHOT.6831817
Acknowledgments
The authors of this paper wish to thank the referees for their valuable suggestions. This work is supported by the Science and Technology Program of suzhou in China under Grant No. SYG201409, Natural Science Foundation of Jiangsu Province in China (No. BK20130529), Natural Science Foundation of the Jiangsu Higher Education Institutions in China (No. 3KJB520001).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xie, CH., Qiao, WW., Liu, Z. et al. Single image dehazing using kernel regression model and dark channel prior. SIViP 11, 705–712 (2017). https://doi.org/10.1007/s11760-016-1013-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-016-1013-3