Abstract
A toroidal fullerene (toroidal polyhex) is a cubic bipartite graph embedded on the torus such that each face is a hexagon. An edge irregular total k-labeling of a graph G is such a labeling of the vertices and edges with labels 1, 2, … , k that the weights of any two different edges are distinct, where the weight of an edge is the sum of the label of the edge itself and the labels of its two endvertices. The minimum k for which the graph G has an edge irregular total k-labeling is called the total edge irregularity strength, tes(G). In this paper we determine the exact value of the total edge irregularity strength of toroidal polyhexes.
Similar content being viewed by others
References
Ahmad, A., Bača, M., Siddiqui, M.K.: On edge irregular total labeling of categorical product of two cycles. Theory Comput. Syst. (2013). doi:10.1007/s00224-013-9470-3
Bača M., Jendroľ S., Miller M., Ryan J.: On irregular total labellings. Discrete Math. 307, 1378–1388 (2007)
Beuerle F., Herrmann C., Whalley A.C., Valente C., Gamburd A., Ratner M.A., Stoddart J.F.: Optical and vibrational properties of toroidal carbon nanotubes. Chem. Eur. J. 17, 3868–3875 (2011)
Brandt S., Miškuf J., Rautenbach D.: On a conjecture about edge irregular total labellings. J. Graph Theory. 57, 333–343 (2008)
Cash G.G.: Simple means of computing the Kekulé structure count for toroidal polyhex fullerenes. J. Chem. Inf. Comput. Sci. 38, 58–61 (1998)
Chunling T., Xiaohui L., Yuansheng Y., Liping W.: Irregular total labellings of C m □ C n . Utilitas Math. 81, 3–13 (2010)
Deza M., Fowler P.W., Rassat A., Rogers K.M.: Fullerenes as tilings of surfaces. J. Chem. Inf. Comput. Sci. 40, 550–558 (2000)
Haque K.M.M.: Irregular total labellings of generalized Petersen graphs. Theory Comput. Syst. 50, 537–544 (2012)
Ivančo J., Jendroľ S.: Total edge irregularity strength of trees. Discussiones Math. Graph Theory 26, 449–456 (2006)
Jendroǐ S., Miškuf J., Soták R.: Total edge irregularity strength of complete and complete bipartite graphs. Electron. Notes Discrete Math. 28, 281–285 (2007)
Jendroǐ S., Miškuf J., Soták R.: Total edge irregularity strength of complete graphs and complete bipartite graphs. Discrete Math. 310, 400–407 (2010)
Kang M.H.: Toroidal fullerenes with the Cayley graph structures. Discrete Math. 311, 2384–2395 (2011)
Kirby E.C., Mallion R.B., Pollak P.: Toridal polyhexes. J. Chem. Soc. Faraday Trans. 89(12), 1945–1953 (1993)
Kirby E.C., Pollak P.: How to enumerate the connectional isomers of a toridal polyhex fullerene. J. Chem. Inf. Comput. Sci. 38, 66–70 (1998)
Klein D.J.: Elemental benzenoids. J. Chem. Inf. Comput. Sci. 34, 453–459 (1994)
Klein D.J., Zhu H.: Resonance in elemental benzenoids. Discrete Appl. Math. 67, 157–173 (1996)
Miškuf J., Jendroľ S.: On total edge irregularity strength of the grids. Tatra Mt. Math. Publ. 36, 147–151 (2007)
Nurdin, Salman, A.N.M., Baskoro, E.T.: The total edge-irregular strengths of the corona product of paths with some graphs. J. Combin. Math. Combin. Comput. 65, 163–175 (2008)
Ye, D., Qi, Z., Zhang, H.: On k-resonant fullerene graphs. SIAM J. Discrete Math. 23(2):1023–1044 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bača, M., Lascsáková, M. & Siddiqui, M.K. Total Edge Irregularity Strength of Toroidal Fullerene. Math.Comput.Sci. 7, 487–492 (2013). https://doi.org/10.1007/s11786-014-0172-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-014-0172-2