Abstract
We deal with the totally irregular total labeling which is required to be at the same time vertex irregular total and also edge irregular total. The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G. In this paper, we estimate the upper bound of the total irregularity strength of graphs and determine the exact value of the total irregularity strength for three families of graphs.
Similar content being viewed by others
References
Ahmad A., Bača M.: On vertex irregular total labelings. Ars Combin. 112, 129–139 (2013)
Ahmad A., Bača M.: Total edge irregularity strength of a categorical product of two paths. Ars Comb. 114, 203–212 (2014)
Ahmad A., Bača M., Bashir Y., Siddiqui M.K.: Total edge irregularity strength of strong product of two paths. Ars Comb. 106, 449–459 (2012)
Ahmad A., Bača M., Siddiqui M.K.: On edge irregular total labeling of categorical product of two cycles. Theory Comput. Syst. 54(1), 1–12 (2014)
Anholcer M., Kalkowski M., Przybylo J.: A new upper bound for the total vertex irregularity strength of graphs. Discret. Math. 309, 6316–6317 (2009)
Bača M., Jendroľ S., Miller M., Ryan J.: On irregular total labellings. Discret. Math. 307, 1378–1388 (2007)
Bača M., Lascsáková M., Siddiqui M.K.: Total edge irregularity strength of toroidal fullerene. Math. Comput. Sci. 7, 487–492 (2013)
Bača M., Siddiqui M.K.: Total edge irregularity strength of generalized prism. Appl. Math. Comput. 235, 168–173 (2014)
Bohman T., Kravitz D.: On the irregularity strength of trees. J. Graph Theory 45, 241–254 (2004)
Brandt S., Miškuf J., Rautenbach D.: On a conjecture about edge irregular total labellings. J. Graph Theory 57, 333–343 (2008)
Chartrand G., Jacobson M.S., Lehel J., Oellermann O.R., Ruiz S., Saba F.: Irregular networks. Congr. Numer. 64, 187–192 (1988)
Haque M.K.M.: Irregular total labellings of generalized Petersen graphs. Theory Comput. Syst. 50, 537–544 (2012)
Ivančo J., Jendroľ S.: Total edge irregularity strength of trees. Discuss. Math. Graph Theory 26, 449–456 (2006)
Jendroľ S., Miškuf J., Soták R.: Total edge irregularity strength of complete and complete bipartite graphs. Electron. Notes Discret. Math. 28, 281–285 (2007)
Jendroľ S., Miškuf J., Soták R.: Total edge irregularity strength of complete graphs and complete bipartite graphs. Discret. Math. 310, 400–407 (2010)
Majerski P., Przybylo J.: Total vertex irregularity strength of dense graphs. J. Graph Theory. 76(1), 34–41 (2014)
Marzuki C.C., Salman A.N.M., Miller M.: On the total irregularity strength on cycles and paths. Far East J. Math. Sci. 82(1), 1–21 (2013)
Miškuf J., Jendroľ S.: On total edge irregularity strength of the grids. Tatra Mt. Math. Publ. 36, 147–151 (2007)
Nierhoff T.: A tight bound on the irregularity strength of graphs. SIAM J. Discret. Math. 13, 313–323 (2000)
Nurdin, Salman A.N.M., Baskoro E.T.: The total edge-irregular strengths of the corona product of paths with some graphs. J. Comb. Math. Comb. Comput. 65, 163–175 (2008)
Nurdin, Baskoro E.T., Salman A.N.M., Gaos N.N.: On the total vertex irregularity strength of trees. Discret. Math. 310, 3043–3048 (2010)
Nurdin, Baskoro E.T., Salman A.N.M., Gaos N.N.: On the total vertex irregular labelings for several types of trees. Util. Math. 83, 277–290 (2010)
Nurdin, Salman A.N.M., Gaos N.N., Baskoro E.T.: On the total vertex-irregular strength of a disjoint union of t copies of a path. J. Combin. Math. Combin. Comput. 71, 227–233 (2009)
Przybylo J.: Linear bound on the irregularity strength and the total vertex irregularity strength of graphs. SIAM J. Discret. Math. 23, 511–516 (2009)
Ramdani R., Salman A.N.M.: On the total irregularity strength of some Cartesian product graphs. AKCE Int. J. Graphs Comb. 10(2), 199–209 (2013)
Togni O.: Irregularity strength of the toroidal grid. Discret. Math. 165/166, 609–620 (1997)
Wijaya K., Wijaya K.: Total vertex irregular labeling of wheels, fans, suns and friendship graphs. J. Comb. Math. Comb. Comput. 65, 103–112 (2008)
Wijaya K., Slamin, Surahmat, Jendroľ S.: Total vertex irregular labeling of complete bipartite graphs. J. Comb. Math. Comb. Comput. 55, 129–136 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ramdani, R., Salman, A.N.M., Assiyatun, H. et al. Total Irregularity Strength of Three Families of Graphs. Math.Comput.Sci. 9, 229–237 (2015). https://doi.org/10.1007/s11786-015-0229-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-015-0229-x