Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Proximal method of solving split system of minimization problem

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce iterative algorithm solving split system of minimization problem given as a task of finding a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image under a bounded linear operator is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. We obtain strong convergence of the sequence generated by our algorithm under some suitable conditions on the parameters. The iterative schemes are developed with a way of selecting the step sizes such that the information of operator norm is not necessary. Some applications and numerical experiment is given to analyse the efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbas, M., AlShahrani, M., Ansari, Q.H., Iyiola, O.S., Shehu, Y.: Iterative methods for solving proximal split minimization problems. Numer. Algorithms 78, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L., et al.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer, Berlin (2011)

    Book  Google Scholar 

  3. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441 (2002)

    Article  MathSciNet  Google Scholar 

  4. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103 (2003)

    Article  MathSciNet  Google Scholar 

  5. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353 (2006)

    Article  Google Scholar 

  7. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: The split feasibility model leading to a unified approach for inversion problems in intensity-modulated radiation therapy. Technical Report 20 April: Department of Mathematics, University of Haifa, Israel (2005)

  8. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071 (2005)

    Article  MathSciNet  Google Scholar 

  10. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327, 1244–1256 (2007)

    Article  MathSciNet  Google Scholar 

  12. Censor, Y., Segal, A.: Iterative projection methods in biomedical inverse problems. In: Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), vol. 10, pp. 65–96 (2008)

  13. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Dang, Y., Gao, Y.: The strong convergence of a three-step algorithm for the split feasibility problem. Optim. Lett. 7, 1325–1339 (2013)

    Article  MathSciNet  Google Scholar 

  15. Dang, Y., Gao, Y., Li, L.: Inertial projection algorithms for convex feasibility problem. J. Syst. Eng. Electron. 23, 734–740 (2012)

    Article  Google Scholar 

  16. Gebrie, A.G., Wangkeeree, R.: Hybrid projected subgradient-proximal algorithms for solving split equilibrium problems and split common fixed point problems of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. 1, 5 (2018)

    Article  MathSciNet  Google Scholar 

  17. Hendrickx, J.M., Olshevsky, A.: Matrix p-norms are NP-hard to approximate if \(p\ne 1,2,\infty \). SIAM J. Matrix Anal. Appl. 31, 2802–2812 (2010)

    Article  MathSciNet  Google Scholar 

  18. Kazmi, K.R., Rizvi, S.H.: Iterative approximation of a common solution of a split equilibrium problem, a variational inequality problem and a fixed point problem. J. Egypt. Math. Soc. 21, 44–51 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kumam, W., Kumam, P.: Hybrid iterative scheme by a relaxed extragradient method for solutions of equilibrium problems and a general system of variational inequalities with application to optimization. Nonlinear Anal Hybrid 3, 640–656 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kumam, P.: A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive mapping. Nonlinear Anal Hybrid 2, 1245–1255 (2008)

    Article  MathSciNet  Google Scholar 

  21. Latif, A., Vahidi, J., Eslamian, M.: Strong convergence for generalized multiple-set split feasibility problem. Filomat 30, 459–467 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lemaire, B.: Which fixed point does the iteration method select? In: Gritzmann, P., Horst, R., Sachs, E., Tichatschke, R. (eds.) Recent Advances in Optimization, pp. 154–167. Springer, Berlin (1997)

    Chapter  Google Scholar 

  23. López, G., Martín-Márquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012)

    Article  MathSciNet  Google Scholar 

  24. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set Valued Anal. 16, 899–912 (2008)

    Article  MathSciNet  Google Scholar 

  25. Martinet, B.: Détermination approchée d’un point fixe d’une application pseudo-contractante. C. R. Acad. Sci. Paris 274, 163–165 (1972)

    MathSciNet  MATH  Google Scholar 

  26. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. RAIRO 4, 154–159 (1970)

    MATH  Google Scholar 

  27. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Moudafi, A., Thakur, S.: Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 8, 2099–2110 (2014)

    Article  MathSciNet  Google Scholar 

  29. Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655 (2005)

    Article  MathSciNet  Google Scholar 

  30. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  31. Rockafellar, R.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  Google Scholar 

  32. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Berlin (2009)

    MATH  Google Scholar 

  33. Shehu, Y., Cai, G., Iyiola, O.S.: Iterative approximation of solutions for proximal split feasibility problems. Fixed Point Theory Appl. 1, 123 (2015)

    Article  MathSciNet  Google Scholar 

  34. Shehu, Y., Iyiola, O.S.: Accelerated hybrid viscosity and steepest-descent method for proximal split feasibility problems. Optimization 67, 475–492 (2018)

    Article  MathSciNet  Google Scholar 

  35. Shehu, Y., Iyiola, O.S.: Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method. J. Fixed Point Theory Appl. 19, 2483–2510 (2017)

    Article  MathSciNet  Google Scholar 

  36. Shehu, Y., Iyiola, O.S.: Nonlinear iteration method for proximal split feasibility problems. Math. Methods Appl. Sci. 41, 781–802 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Shehu, Y., Iyiola, O.S.: Strong convergence result for proximal split feasibility problem in Hilbert spaces. Optimization 66, 2275–2290 (2017)

    Article  MathSciNet  Google Scholar 

  38. Shehu, Y., Ogbuisi, F.U.: Convergence analysis for proximal split feasibility problems and fixed point problems. J. Appl. Math. Comput. 48, 221–239 (2015)

    Article  MathSciNet  Google Scholar 

  39. Wen, M., Peng, J., Tang, Y.: A cyclic and simultaneous iterative method for solving the multiple-sets split feasibility problem. J. Optim. Theory Appl. 166, 844–860 (2015)

    Article  MathSciNet  Google Scholar 

  40. Xu, H.K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Aust. Math. Soc. 65, 109–113 (2002)

    Article  MathSciNet  Google Scholar 

  41. Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse probl. 22, 2021 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anteneh Getachew Gebrie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebrie, A.G., Wangkeeree, R. Proximal method of solving split system of minimization problem. J. Appl. Math. Comput. 63, 107–132 (2020). https://doi.org/10.1007/s12190-019-01310-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01310-w

Keywords

Mathematics Subject Classification