Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Optimal dosing strategy and sensitivity analysis of a within-host drug resistance model with continuous and impulsive drug treatment

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this work, we investigate the dynamics of the drug-resistance models with the continuous and impulsive drug treatment. Firstly, a mathematical model with the continuous drug treatment is presented. The existence and stability of the boundary and positive equilibria are investigated. At the same time, the optimal dosing strategy is given according to the Pontryagin’s Maximum Principle. Secondly, the impulsive drug treatment is also considered. The stability of the bacteria-free periodic solution and persistance of system are obtained when some conditions are satisfied. The sensitivity analysis is presented to determine the relative importance of different factors responsible for the drug-resistance model. Furthermore, our theoretical results are justified by some numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balasegaram, M.: Learning from COVID-19 to tackle antibiotic resistance. ACS Infect. Dis. 7(4), 693–694 (2021)

    Article  Google Scholar 

  2. Langford, B.J., So, M., Raybardhan, S., et al.: Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin. Microbiol. Infect. 27(4), 520–531 (2021)

    Article  Google Scholar 

  3. Huttner, B.D., Catho, G., Pano-Pardo, J.R., et al.: COVID-19: don’t neglect antimicrobial stewardship principles! Clin. Microbiol. Infect. 26(7), 808–810 (2020)

    Article  Google Scholar 

  4. Mudassar, I., Smith, H.L.: The dynamics of bacterial infection, innate immune response, and antibiotic treatment. Discret Contin. Dyn. Syst. B 8(1), 127–143 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Adnan, K., Imran, M.: Optimal dosing strategies against susceptible and resistance bacteria. J. Biol. Syst. 26, 1–18 (2018)

    MATH  Google Scholar 

  6. Trobia, J., Tian, K., Batista, A.M., et al.: Mathematical model of brain tumour growth with drug resistance. Commun. Nonlinear Sci. Numer. Simul. 103, 106013–106023 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daṣbaṣi, B., öztürk, I.: Mathematical modelling of bacterial resistance to multiple antibiotics and immune system response. SpringerPlus, 2016, 5(1): 1-17

  8. Nguyen, T.T., Guedj, J., Chachaty, E., et al.: Mathematical modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment duration on the amount of resistant enterobacteria excreted. PLoS Comput. Biol. 10(9), e1003840–e1003853 (2014)

    Article  Google Scholar 

  9. D’Agata, Erika M. C., Dupont-Rouzeyrol, M., Magal, P., Olvier, D., Ruan, S.G.: The impact of different antibiotic regiment on the emergence of antimicrobial-resistance bacteria. Plos One 23(3), e4036–e4045 (2008)

    Article  Google Scholar 

  10. Gomes, A.L.C., Galagan, J.E., Segrè, D.: Resource competition may lead to effective treatment of antibiotic resistance infection. Plos One 8(12), e80775–e80785 (2013)

    Article  Google Scholar 

  11. Chayapham, P., Lenbury, Y.: Stability and persisitence of delayed resistant and sensitive bacterial strains interaction under impulsive drug treatment. Int. J. Math. Comput. Simul. 7(6), 475–484 (2013)

    Google Scholar 

  12. Chayapham, P., Lenbury, Y., Sarika, W.: Stability, Hopf bifurcation and effects of impulsive antibiotic treatments in a model of drug resistance with conversion delay. Adv. Diff. Equ. 2019, 274–292 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ibargüen-Mondragón, E., Esteva, L., Cerón Gómez, M.: An optimal control problem applied to plasmid-mediated antibiotic resistance. J. Appl. Math. Comput. 68(3), 1635–1667 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ibargüen-Mondragón, E., Mosquera, S., Ceróna, M., et al.: Mathematical modeling on bacterial resistance to multiple antibioticscaused by spontaneous mutations. Biosystems 117, 60–67 (2014)

    Article  Google Scholar 

  15. Bahatdin, D., Öztürk, I.: Mathematical modelling of bacterial resistance to multiple antibiotics and immune system response. Springerplus 2016(5), 408–425 (2016)

    Google Scholar 

  16. Handel, A., Margolis, E., Levin, B.R.: Exploring the role of the immune response in preventing antibiotic resistance. J. Theor. Biol. 256(4), 655–662 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ibargüen-Mondragón, E., Romero-Leiton, J.P., Esteva, L., et al.: Stability and periodic solutions for a model of bacterial resistance to antibiotics caused by mutations and plasmids. Appl. Math. Model. 76, 238–251 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu, L., Wang, H., Shi, Q.: Research progress on elimination methods of bacterial drug-resistant plasmids. Adv. Vet. Med. 40(5), 90–93 (2019)

    Google Scholar 

  19. Zhao, Z., Pang, L., Song, X., et al.: Impact of the impulsive releases and Allee effect on the dispersal behavior of the wild mosquitoes. J. Appl. Math. Comput. 68(3), 1527–1544 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272–1296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, L., Liu, Z., Xu, D., et al.: Global dynamics and optimal control of an influenza model with vaccination, media coverage and treatment. Int. J. Biomath. 10(5), 1750068–1750080 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, X., Liu, Z., Wang, L., et al.: An application of a novel geometric criterion to global-stability problems of a nonlinear SEIVS epidemic model. J. Appl. Math. Comput. 67(1), 707–730 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y., Dhandayuthapani, S., Deretic, V.: Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc. Natl. Acad. Sci. 93(23), 13212–13216 (1996)

    Article  Google Scholar 

  24. Chang, K.C., Yew, W.: Management of difficult multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: update 2012. Respirology 18(1), 8–21 (2013)

    Article  Google Scholar 

  25. Fadipe, V.O., Rojas, J.A.Y., Areola, E.S., et al.: Synthesis, QSAR model study and antimicrobial evaluation of esters and thioester derivatives of isonicotinic acid on the different strains of mycobacterium tuberculosis. Iran. J. Pharm. Res. 2(6), 00037–00049 (2016)

    Google Scholar 

  26. Ibargüen-Mondragón, E., Esteva, L., Burbano-Rosero, E.M.: Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma. Math. Biosci. Eng. 15(2), 407–420 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzheng Dong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (No. 12171193).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Jia, J., Dong, Y. et al. Optimal dosing strategy and sensitivity analysis of a within-host drug resistance model with continuous and impulsive drug treatment. J. Appl. Math. Comput. 69, 2277–2293 (2023). https://doi.org/10.1007/s12190-022-01833-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01833-9

Keywords

Mathematics Subject Classification