Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A complex-valued encoding satin bowerbird optimization algorithm for global optimization

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

The real-valued satin bowerbird optimization (SBO) is a novel metaheuristic bio-inspired algorithm which imitates the ‘male-attracts-the-female for breeding’ principle of the specialized stick structure mechanism of satin birds. SBO has achieved success in congestion management, accurate software development effort estimation. In this paper, to enhance the SBO algorithm global exploration ability, a complex-valued encoding satin bowerbird optimization algorithm (CSBO) is proposed. We use complex-valued encoding enhance the diversity of the population, and the global exploration ability of the SBO algorithm. The proposed CSBO optimization algorithm is compared to SBO and other state-of-art optimization algorithms using ten benchmark functions. Simulation results show that the proposed CSBO can significantly improve the convergence accuracy and convergence speed of the original algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdel-Baset M, Wu H, Zhou Y (2017) A complex encoding flower pollination algorithm for constrained engineering optimisation problems. Int J Math Model Numer Optim 8(2):108–126

    Google Scholar 

  • Angelov P (1994) A generalized approach to fuzzy optimization. Int J Intell Syst 9(3):261–268

    Article  Google Scholar 

  • de Vasconcelos Segundo EH, Mariani VC, dos SantosCoelho L (2019) Design of heat exchangers using Falcon Optimization Algorithm. Appl Thermal Eng 156:119–144

    Article  Google Scholar 

  • Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  • Du J-X, Huang DS, Wang X-F, Gu X (2007) Shape recognition based on neural networks trained by differential evolution algorithm. Neurocomputing 70(4–6):896–903

    Article  Google Scholar 

  • El-Hay EA, El-Hameed MA, El-Fergany AA (2018) Steady-state and dynamic models of solid oxide fuel cells based on Satin Bowerbird Optimizer. Int J Hydrogen Energy 43(31):14751–14761

    Article  Google Scholar 

  • Fister I Jr, Yang X-S, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektrotehniski Vestnik 80(3):1–7

    MATH  Google Scholar 

  • Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  • Han F, Huang DS (2008) A new constrained learning algorithm for function approximation by encoding a priori information into feedforward neural networks. Neural Comput Appl 17(5–6):433–439

    Article  Google Scholar 

  • Han F, Ling Q-H, Huang DS (2008) Modified constrained learning algorithms incorporating additional functional constraints into neural networks. Inf Sci 178(3):907–919

    Article  Google Scholar 

  • Huang DS (1996) Systematic theory of neural networks for pattern recognition (in Chinese). Publishing House of Electronic Industry of China, Beijing

    Google Scholar 

  • Huang DS (1999) Radial basis probabilistic neural networks: model and application. Int J Pattern Recognit Artif Intell 13(7):1083–1101

    Article  Google Scholar 

  • Huang DS (2004) A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Trans Neural Networks 15(2):477–491

    Article  Google Scholar 

  • Huang DS, Du J-X (2008) A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans Neural Netw 19(12):2099–2115

    Article  Google Scholar 

  • Huang DS, Ma SD (1999) Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding. J Intell Syst 9(1):1–38

    Article  Google Scholar 

  • Huang DS, Zhao WB (2005) Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms. Appl Math Comput 162(1):461–473

    MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  Google Scholar 

  • Kennedy J (2011) Particle swarm optimization. Encyclopedia of machine learning. Springer, New York, pp 760–766

    Google Scholar 

  • Klein CE, dos Santos Coelho L (2018) Meerkats-inspired algorithm for global optimization problems. ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 25–27 April 2018

  • Klein CE, Mariani VC, dos Santos Coelho L (2018) Cheetah based optimization algorithm: a novel swarm intelligence paradigm. ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 25–27 April 2018

  • Li B, Wang C, Huang DS (2009) Supe rvised feature extraction based on orthogonal discriminant projection. Neurocomputing 73(1–3):191–196

    Article  Google Scholar 

  • Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Article  MathSciNet  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Moosavi SHS, Bardsiri VK (2017) Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Eng Appl Artif Intell 60:1–15

    Article  Google Scholar 

  • Mortazavia Ali, Toğanb Vedat, Nuhoğluc Ayhan (2018) Interactive search algorithm: a new hybrid metaheuristic optimization algorithm. Eng Appl Artif Intell 71:275–292

    Article  Google Scholar 

  • Pierezan J, Dos Santos Coelho L (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018

  • Rainer S, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  • Rashid S, Saraswathi S, Kloczkowski A et al (2016) Protein secondary structure prediction using a small training set (compact model) combined with a complex-valued neural network approach. BMC Bioinform 17(1):362

    Article  Google Scholar 

  • Sakthivel VP, Bhuvaneswari R, Subramanian S (2010) Multi-objective parameter estimation of induction motor using particle swarm optimization. Eng Appl Artif Intell 23(3):302–312

    Article  Google Scholar 

  • Shadravan S, Naji HR, Bardsiri VK (2019) The Sailfish Optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34

    Article  Google Scholar 

  • Shang L, Huang DS, Du J-X, Zheng C-H (2006) Palmprint recognition using FastICA algorithm and radial basis probabilistic neural network. Neurocomputing 69(13–15):1782–1786

    Article  Google Scholar 

  • Shayanfar H, Gharehchopogh FS (2018) Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems. Appl Soft Comput 71:728–746

    Article  Google Scholar 

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Xiong T, Bao Y, Hu Z et al (2015) Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms. Inf Sci 305:77–92

    Article  Google Scholar 

  • Yang X-S (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

    Book  Google Scholar 

  • Yang X-S (2012) Flower pollination algorithm for global optimization. UCNC, Barasat

    Book  Google Scholar 

  • Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. Nature & biologically inspired computing, 2009. NaBIC 2009. World Congress on. IEEE

  • Zhao WB, Huang DS, Du J-Y, Wang L-M (2004) Genetic optimization of radial basis probabilistic neural networks. Int J Pattern Recognit Artif Intell 18(8):1473–1500

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of China under Grants No. 61563008, and by Project of Guangxi Natural Science Foundation under Grant No. 2018GXNSFAA138146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhou, Y. & Luo, Q. A complex-valued encoding satin bowerbird optimization algorithm for global optimization. Evolving Systems 12, 191–205 (2021). https://doi.org/10.1007/s12530-019-09307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-019-09307-3

Keywords