Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A general multi-splitting iteration method for computing PageRank

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, based on the multi-splitting iteration (MSI) method (Gu and Wang in J Appl Math Comput 42:479–490, 2013), we present a general multi-splitting iteration (GMSI) method for solving the PageRank problem. The convergence of the GMSI method is analyzed in detail. Moreover, the same idea can be used as a preconditioning technique to accelerate Krylov subspace methods, such as the GMRES method. Finally, several numerical examples are given to illustrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This means neither \(N_{1}\) nor \(N_{2}-N_{1}\) is the null matrix.

References

  • Bai ZZ (2012) On convergence of the inner–outer iteration method for computing PageRank. Numer Algebra Control Optim 2:855–862

    Article  MathSciNet  Google Scholar 

  • Bai ZZ, Sun JC, Wang DR (1996) A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations. Comput Math Appl 32:51–76

    Article  MathSciNet  Google Scholar 

  • Bai ZZ, Golub GH, Ng MK (2003) Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl 24:603–626

    Article  MathSciNet  Google Scholar 

  • Berman A, Plemmons RJ (1979) Nonnegative matrices in the mathematical sciences. Academic Press, NewYork

    MATH  Google Scholar 

  • Boldi P, Santini M, Vigna S (2005) PageRank as a function of the damping factor. In: Proceedings of the 14th international world web conference. ACM, New York

  • Chronopoulos AT, Kucherov AB (2010) Block s-step Krylov iterative methods. Numer Linear Algebra Appl 17:3–15

    Article  MathSciNet  Google Scholar 

  • Demmel JW (1997) Applied numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Gleich DF, Gray AP, Greif C, Lau T (2010) An inner–outer iteration method for computing PageRank. SIAM J Sci Comput 32:349–371

    Article  MathSciNet  Google Scholar 

  • Golub GH, Greif C (2006) An Arnoldi-type algorithm for computing PageRank. BIT Numer Math 46:759–771

    Article  MathSciNet  Google Scholar 

  • Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Grimmett G, Stirzaker D (2001) Probability and random processes, 3rd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Gu CQ, Wang L (2013) On the multi-splitting iteration method for computing PageRank. J Appl Math Comput 42:479–490

    Article  MathSciNet  Google Scholar 

  • Gu CQ, Wang WW (2017) An Arnoldi-Inout algorithm for computing PageRank problems. J Comput Appl Math 309:219–229

    Article  MathSciNet  Google Scholar 

  • Gu CQ, Xie F, Zhang K (2015) A two-step matrix splitting iteration for computing PageRank. J Comput Appl Math 278:19–28

    Article  MathSciNet  Google Scholar 

  • Hadjimos A (1978) Accelerated overrelaxation method. Math Comput 32:149–157

    Article  MathSciNet  Google Scholar 

  • Haveliwala TH, Kamvar SD, Klein D, Manning C, Golub GH (2003) Computing PageRank using power extrapolation. Stanford University Technical Report

  • http://www.cise.ufl.edu/research/sparse/matrices/Gleich/index.html

  • Huang N, Ma CF (2015) Parallel multisplitting iteration methods based on M-splitting for the PageRank problem. Appl Math Comput 271:337–343

    MathSciNet  MATH  Google Scholar 

  • Ipsen I, Selee T (2007) PageRank computation, with special attention to dangling nodes. SIAM J Matrix Anal Appl 29(4):1281–1296

    Article  MathSciNet  Google Scholar 

  • Jia ZX (1997) Refined iterative algorithms based on Arnoldis process for large unsymmetric eigenproblems. Linear Algebra Appl 259:1–23

    Article  MathSciNet  Google Scholar 

  • Kamvar SD, Haveliwala TH, Golub GH (2003a) Extrapolation methods for accelerating PageRank computations. Technique Report SCCM 03-02, Stanford

  • Kamvar S, Haveliwala T, Manning C, Golub G (2003b) Extrapolation methods for accelerating PageRank computations. In: Proceedings of the 12th international world web conference. ACM, New York

  • Kamvar SD, Haveliwala TH, Golub GH (2004) Adaptive methods for the computation of PageRank. Linear Algebra Appl 386:51–65

    Article  MathSciNet  Google Scholar 

  • Langville A, Meyer C (2005) A survey of eigenvector methods of web information retrieval. SIAM Rev 47(1):135–161

    Article  MathSciNet  Google Scholar 

  • Langville AN, Meyer CD (2006) Googles PageRank and beyond: the science of search engine rankings. Princet on University Press, Princeton

    MATH  Google Scholar 

  • Lee CP, Golub GH, Zenios SA (2003) A fast two-stage algorithm for computing PageRank and its extensions. Stanford University Technical Report, SCCM- 03-15

  • Lin YQ, Shi XH, Wei YM (2009) On computing PageRank via lumping the Google matrix. J Comput Appl Math 224:702–708

    Article  MathSciNet  Google Scholar 

  • Morgan R, Zeng M (2006) A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity. Linear Algebra Appl 415:96–113

    Article  MathSciNet  Google Scholar 

  • Page L, Brin S, Motwami R, Winograd T (1998) The PageRank citation ranking: bringing order to the web. Technical Report, Computer Science Department, Stanford University

  • Pu BY, Huang TZ, Wen C (2014) A preconditioned and extrapolation-accelerated GMRES method for PageRank. Appl Math Lett 37:95–100

    Article  MathSciNet  Google Scholar 

  • Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Article  MathSciNet  Google Scholar 

  • Song YZ (1997) On the convergence of the MAOR method. J Comput Appl Math 79:299–317

    Article  MathSciNet  Google Scholar 

  • Tan XY (2017) A new extrapolation method for PageRank computations. J Comput Appl Math 313:383–392

    Article  MathSciNet  Google Scholar 

  • Varga RS (2000) Matrix iterative analysis. Springer, Berlin

    Book  Google Scholar 

  • Wen C, Huang TZ, Shen ZL (2017) A note on the two-step matrix splitting iteration for computing PageRank. J Comput Appl Math 315:87–97

    Article  MathSciNet  Google Scholar 

  • Wu G, Wei YM (2007) A power-Arnoldi algorithm for computing PageRank. Numer Linear Algebra Appl 14:521–546

    Article  MathSciNet  Google Scholar 

  • Wu G, Wei YM (2010) An Arnoldi-extrapolation algorithm for computing PageRank. J Comput Appl Math 234:3196–3212

    Article  MathSciNet  Google Scholar 

  • Wu G, Zhang Y, Wei Y-M (2013) Accelerating the Arnoldi-type algorithm for the PageRank problem and the ProteinRank problem. J Sci Comput 57:74–104

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledges the partial support of the China Scholarship Council (201706935029). We would like to thank Dr. P.H. Wen from Queen Mary University of London and Dr. Xiaoyan Liu from Taiyuan University of Technology for their valuable comments and suggestions, which improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolu Tian.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Zhang, Y., Wang, Y. et al. A general multi-splitting iteration method for computing PageRank. Comp. Appl. Math. 38, 60 (2019). https://doi.org/10.1007/s40314-019-0830-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0830-8

Keywords

Mathematics Subject Classification