Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Disturbance Estimator-Based Nonsingular Fast Fuzzy Terminal Sliding-Mode Formation Control of Autonomous Underwater Vehicles

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes a novel disturbance estimator-based nonsingular fast fuzzy terminal sliding-mode formation control method. The leader–follower formation control method is combined with the path planning strategy based on the artificial potential field to be collision-free and move in consensus for each AUV. An improved sliding-mode surface is incorporated into the controller, providing the system’s state with a faster convergence rate away from the stable equilibrium. The chattering problem in the controller is eliminated by designing fuzzy control rules which are derived from the Lyapunov energy function. A disturbance estimator is proposed to compensate for unknown dynamic and disturbances, which enhances the robustness and stability of the system. Simulation and comparison results are provided to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Wang, N., Ahn, C.K.: Coordinated trajectory-tracking control of a marine aerial-surface heterogeneous system. IEEE-ASME Trans. Mechatron. 26(6), 3198–3210 (2021). https://doi.org/10.1109/TMECH.2021.3055450

    Article  Google Scholar 

  2. Wang, N., Gao, Y., Zhang, X.F.: Data-driven performance-prescribed reinforcement learning control of an unmanned surface vehicle. IEEE Trans. Neural Netw. Learn. Syst. 32(12), 5456–5467 (2021). https://doi.org/10.1109/TNNLS.2021.3056444

    Article  MathSciNet  Google Scholar 

  3. Wang, N., Zhang, Y.H., Ahn, C.K., Xu, Q.Y.: Autonomous pilot of unmanned surface vehicles: bridging path planning and tracking. IEEE Trans. Veh. Technol. 71(3), 2358–2374 (2022). https://doi.org/10.1109/TVT.2021.3136670

    Article  Google Scholar 

  4. Cui, R.X., Shuzhi, S.G., Bernard, V.E.H., Yoo, S.C.: Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Eng. 37(17), 1491–1502 (2010). https://doi.org/10.1016/j.oceaneng.2010.07.006

    Article  Google Scholar 

  5. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998). https://doi.org/10.1109/70.736776

    Article  Google Scholar 

  6. Pashna, M., Yusof, R., Ismail, Z.H., Namerikawa, T., Yazdani, S.: Autonomous multi-robot tracking system for oil spills on sea surface based on hybrid fuzzy distribution and potential field approach. Ocean Eng. 207, 107238 (2020). https://doi.org/10.1016/j.oceaneng.2020.107238

    Article  Google Scholar 

  7. Do, K.D.: Formation control of multiple elliptical agents with limited sensing ranges. Automatica 48(7), 1330–1338 (2012). https://doi.org/10.1016/j.automatica.2012.04.005

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, N., Su, S.-F.: Finite-time unknown observer based interactive trajectory tracking control of asymmetric underactuated surface vehicles. IEEE Trans. Control Syst. Technol. 29(2), 794–803 (2021)

    Article  Google Scholar 

  9. Xu, J.: Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatica 68, 228–236 (2016). https://doi.org/10.1016/j.automatica.2016.01.064

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, F., Fei, L., Liu, S.R., Zhong, C.L.: Hybrid formation control of multiple mobile robots with obstacle avoidance. In: 2010 8th World Congress on Intelligent Control and Automation. pp. 1039–1044 (2010). https://doi.org/10.1109/WCICA.2010.5554820.

  11. Barnes, L.E.: A potential field based formation control methodology for robot swarms. ProQuest Dissertations and Theses University of South Florida, USA (2008).

  12. Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control. 21(16), 1865–1879 (2011). https://doi.org/10.1002/rnc.1666

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, M., Shi, P., Lim, C.C.: Robust constrained control for MIMO nonlinear systems based on disturbance observer. IEEE Trans. Automat. Control. 60(12), 3281–3286 (2015). https://doi.org/10.1109/TAC.2015.2450891

    Article  MathSciNet  MATH  Google Scholar 

  14. Qiao, L., Bowen, Y., Wu, D., Zhang, W.D.: Design of three exponentially convergent robust controllers for the trajectory tracking of autonomous underwater vehicles. Ocean Eng. (2017). https://doi.org/10.1016/j.oceaneng.2017.02.006

    Article  Google Scholar 

  15. Van, M.: An enhanced robust fault tolerant control based on an adaptive fuzzy PID-nonsingular fast terminal sliding mode control for uncertain nonlinear systems. IEEE-ASME Trans. Mechatron. 23(3), 1362–1371 (2018). https://doi.org/10.1109/TMECH.2018.2812244

    Article  Google Scholar 

  16. Cui, R.X., Zhang, X., Cui, D.: Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Eng. 123, 45–54 (2016). https://doi.org/10.1016/j.oceaneng.2016.06.041

    Article  Google Scholar 

  17. Wang, N., Gao, Y., Zhao, H., Ahn, C.K.: Reinforcement learning-based optimal tracking control of an unknown unmanned surface vehicle. IEEE Trans. Neural Netw. Learn. Syst. 32(7), 3034–3045 (2021)

    Article  MathSciNet  Google Scholar 

  18. Peng, Z.H., Wang, J.: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. Syst. 48(4), 535–544 (2018). https://doi.org/10.1109/TSMC.2017.2697447

    Article  Google Scholar 

  19. Van, M.: An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer. ISA Trans. 90, 30–40 (2019). https://doi.org/10.1016/j.isatra.2018.12.047

    Article  Google Scholar 

  20. Lee, J.Y., Chang, P.H., Jin, M.L.: Adaptive integral sliding mode control with time-delay estimation for robot manipulators. IEEE Trans. Ind. Electron. 64(8), 6796–6804 (2017). https://doi.org/10.1109/TIE.2017.2698416

    Article  Google Scholar 

  21. Cui, R.X., Chen, L.P., Yang, C.G., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 64(8), 6785–6795 (2017). https://doi.org/10.1109/TIE.2017.2694410

    Article  Google Scholar 

  22. Kim, J.K., Joe, H., Yu, S.C., Lee, J.S., Kim, M.: Time-delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans. Ind. Electron. 63(2), 1052–1061 (2016). https://doi.org/10.1109/TIE.2015.2477270

    Article  Google Scholar 

  23. Patre, B.M., Londhe, P.S., Nagarale, R.M.: Fuzzy sliding mode control for spatial control of large nuclear reactor. IEEE Trans. Nucl. Sci. 62(5), 2255–2265 (2015). https://doi.org/10.1109/TNS.2015.2464677

    Article  Google Scholar 

  24. Kaynak, O., Erbatur, K., Ertugnrl, M.: The fusion of computationally intelligent methodologies and sliding-mode control-a survey. IEEE Trans. Ind. Electron. 48(1), 4–17 (2001). https://doi.org/10.1109/41.904539

    Article  Google Scholar 

  25. Shahraz, A., Boozarjomehry, R.B.: A fuzzy sliding mode control approach for nonlinear chemical processes. Control Eng. Practice. 17(5), 541–550 (2009). https://doi.org/10.1016/j.conengprac.2008.10.011

    Article  Google Scholar 

  26. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robot. Auton. Syst. 56(8), 670–677 (2008). https://doi.org/10.1016/j.robot.2007.11.004

    Article  Google Scholar 

  27. Bessa, W.M., Dutra, M.S., Kreuzer, E.: An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles. Robot. Auton. Syst. 58(1), 16–26 (2010). https://doi.org/10.1016/j.robot.2009.09.001

    Article  Google Scholar 

  28. Song, X., Zou, Z.J.: A fuzzy sliding mode controller with adaptive disturbance approximation for underwater robot. In: 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). pp. 50–53 (2010). https://doi.org/10.1109/CAR.2010.5456607.

  29. Lakhekar, G.V., Waghmare, L.M., Londhe, P.S.: Enhanced dynamic fuzzy sliding mode controller for autonomous underwater vehicles. In: 2015 IEEE Underwater Technology (UT). (2015). https://doi.org/10.1109/UT.2015.7108283.

  30. Wang, N., Sun, Z., Yin, J.C., Zou, Z.J., Su, S.F.: Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns. Ocean Eng. 176, 57–64 (2019). https://doi.org/10.1016/j.oceaneng.2019.02.017

    Article  Google Scholar 

  31. Wang, N., Gao, Y., Sun, Z., Zheng, Z.J.: Nussbaum-based adaptive fuzzy tracking control of unmanned surface vehicles with fully unknown dynamics and complex input nonlinearities. Int. J. Fuzzy Syst. 20(1), 259–268 (2017). https://doi.org/10.1007/s40815-017-0387-x

    Article  MathSciNet  Google Scholar 

  32. Zuo, Z.Y.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015). https://doi.org/10.1016/j.automatica.2015.01.021

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Y.: Corrections: adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence. Int. J. Robust Nonlinear Control. (2020). https://doi.org/10.1002/rnc.4067

    Article  MathSciNet  MATH  Google Scholar 

  34. Cao, L., Xiao, B., Golestani, M., Ran, D.C.: Faster fixed-time control of flexible spacecraft attitude stabilization. IEEE Trans. Ind. Inform. 16(2), 1281–1290 (2020). https://doi.org/10.1109/TII.2019.2949588

    Article  Google Scholar 

  35. Wang, N., Zhu, Z.B., Qin, H.D., Deng, Z.C., Sun, Y.C.: Finite-time extended state observer-based exact tracking control of an unmanned surface vehicle. Int. J. Robust Nonlinear Control. 31(5), 1704–1719 (2021). https://doi.org/10.1002/rnc.5369

    Article  MathSciNet  Google Scholar 

  36. Dian, S.Y., Han, J.X., Guo, R., Li, S.C., Zhao, T., Hu, Y., Wu, Q.: Double closed-loop general type-2 fuzzy sliding model control for trajectory tracking of wheeled mobile robots. Int. J. Fuzzy Syst. 21, 2032–2042 (2019). https://doi.org/10.1007/s40815-019-00685-z

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 52025111, 51939003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Si, J., Wang, N. et al. Disturbance Estimator-Based Nonsingular Fast Fuzzy Terminal Sliding-Mode Formation Control of Autonomous Underwater Vehicles. Int. J. Fuzzy Syst. 25, 395–406 (2023). https://doi.org/10.1007/s40815-022-01444-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01444-3

Keywords