Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Interval Type-2 Fuzzy Dissipative Control for Multiagent Systems with Markovian Switching Parameters Via Dynamic Event-Triggered and Double-Quantized Schemes

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper focuses on Interval type-2 (IT2) fuzzy dissipative control for Markov jump nonlinear multiagent systems with partially-known transition rate via dynamic event-triggered protocol (ETP) and double-quantized schemes. Firstly, the integration strategy of dynamic ETP and double-quantized law are proposed as effective methods to reduce the communication frequency, where the dynamic threshold parameter is dynamically adjusted rather than remaining constant, and the input and output data of the controller are quantized by different quantizers in order to reduce conservativeness; Secondly, strictly dissipative performance is taken into account, and the nonlinear features are successfully eliminated by applying a distinctive IT2 T-S fuzzy model with imperfect premise matching; Furthermore, via solving the convex optimization problem, the desired fuzzy feedback controller gains are acquired; Eventually, the utility of the suggested algorithm is demonstrated by an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Udin Harun Al Rasyid, M., Ferry Astika Saputra, Zen Samsono Hadi, and Alfian Fahmi. Beacon-enabled ieee 802.15.4 wireless sensor network performance. In 2013 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), pages 46–49, (2013)

  2. Bong Wan Kim, Jae Hong Ruy, and Seong-Soon Joo. A new efficient partial node update for wireless sensor networks using a simulated virtual node. In 2008 International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pages 179–182, (2008)

  3. Jin, Zhenghong, Wang, Zhanxiu, Zhang, Xuefeng: Cooperative control problem of takagi-sugeno fuzzy multiagent systems via observer based distributed adaptive sliding mode control. J. Frankl. Inst. 359(8), 3405–3426 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. He, Shengchao, Liu, Xiangdong, Pingli, Lu., Liu, Haikuo, Changkun, Du.: Leader-Follower finite-time consensus of multiagent systems with nonlinear dynamics by intermittent protocol. J. Frankl. Inst. 359(6), 2646–2662 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S.Y.: Multiagent approach for consensus control in the energy internet network. Ad. Hoc. Netw. 98, 102056 (2020)

    Article  Google Scholar 

  6. Peng, Zhouhua, Wang, Dan, Zhang, Hongwei, Sun, Gang: Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems. IEEE Trans. Neural Netw. Learn. Sys. 25(8), 1508–1519 (2014)

    Article  Google Scholar 

  7. Tay, A.L., Zurada, J.M., Wong, L.P., Xu, J.: The hierarchical fast learning artificial neural network (hieflann)an autonomous platform for hierarchical neural network construction. IEEE Trans. Neural Netw. 18(6), 1645–1657 (2007)

    Article  Google Scholar 

  8. Takehiro Higuchi, Kakuji Ogawara, and Shinsuke Nishitani. Formation control of underactuated satellite using holonomy. In 2006 SICE-ICASE International Joint Conference, pages 2196–2201, (2006)

  9. El Maghraby, A.K., Grubisic, A., Colombo, C., Tatnall, A.: A novel interferometric microwave radiometer concept using satellite formation flight for geostationary atmospheric sounding. In IEEE Trans. Geosci. Remote Sens. 56(6), 3487–3498 (2018)

    Article  Google Scholar 

  10. Kefei Lian, Yunfeng Dong. Sliding mode control for electromagnetic satellite formation based on rbf neural network. In 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), pages 532–535, (2016)

  11. Liu, Xinxin, Xiaojie, Su., Shi, Peng, Shen, Chao, Peng, Yan: Event-triggered sliding mode control of nonlinear dynamic systems. Automatica 112, 108738 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, J., Liang, L., Park, J.H., Yan, H., Li, K.: A dynamic event-triggered approach to state estimation for switched memristive neural networks with nonhomogeneous sojourn probabilities. IEEE Trans. Circuits Syst.-I: Regular Papers 68(12), 4924–4934 (2021)

    Article  Google Scholar 

  13. Chen, Mengshen, Yan, Huaicheng, Zhang, Hao, Chi, Ming, Li, Zhichen: Dynamic event-triggered asynchronous control for nonlinear multiagent systems based on T-S fuzzy models. IEEE Trans. Fuzzy Syst. 29(9), 2580–2592 (2021)

    Article  Google Scholar 

  14. Zhang, Changzhu, Lam, Hak-Keung., Qiu, Jianbin, Qi, Peng, Chen, Qijun: Fuzzy-model-based output feedback steering control in autonomous driving subject to actuator constraints. IEEE Trans. Fuzzy Syst. 29(3), 457–470 (2021)

    Article  Google Scholar 

  15. Laixiang Zhu, Yanqian Wang, Guangming Zhuang, Gongfei Song. Dynamic-memory event-based asynchronous dissipative filtering for T-S fuzzy singular semi-Markov jump systems against multi-cyber attacks. Applied Mathematics and Computation, pages 127352, (2022)

  16. Qi, Wenhai, Zong, Guangdeng, Karimi, Hamid Reza: Finite-time observer-based sliding mode control for quantized semi-Markov switching systems with application. IEEE Trans. Ind. Inform. 63(2), 1230–1238 (2016)

    Google Scholar 

  17. Minyue, Fu., Xie, Lihua: The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ping Wang, Chengpu Yu. Quantized feedback control for nonlinear feedforward systems. In 2019 IEEE 15th International Conference on Control and Automation (ICCA), pages 1212–1217, (2019)

  19. Zhou, Tianwei, Zuo, Zhiqiang, Wang, Yijing: Self-triggered and event-triggered control for linear systems with quantization. IEEE Trans. Syst. Man Cybern.: Syst. 50(9), 3136–3144 (2020)

    Article  Google Scholar 

  20. Sheng, Li., Wang, Zidong, Wang, Weibo, Alsaadi, Fuad E.: Output-feedback control for nonlinear stochastic systems with successive packet dropouts and uniform quantization effects. IEEE Trans. Syst. Man and Cybern.: Syst. 47(7), 1181–1191 (2017)

    Google Scholar 

  21. Lin, Jinxing, Xiang, Wu., Xiao, Min, Ding, Jie: Stabilization of networked singular control systems under double-channel quantization and dos attacks. J. Frankl. Inst. 359(8), 3517–3548 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gong, Cheng: Zhu, Guopu, Shi, peng adaptive event-triggered and double-quantized consensus of leader-follower multiagent systems with semi-markovian jump parameters. IEEE Trans. Syst. Man Cybern.: Syst. 51(9), 5867–5879 (2021)

    Article  Google Scholar 

  23. Takagi, Tomohiro, Sugeno, Michio: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man and Cybern. 1, 116–132 (1985)

    Article  MATH  Google Scholar 

  24. Zha, Lijuan, Liu, Jinliang, Cao, Jinde: Security control for t-s fuzzy systems with multi-sensor saturations and distributed event-triggered mechanism. J. Frankl. Inst. 357(5), 2851–2867 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rong-Jyue Wang. Delay-dependent fuzzy controller design for stabilization of nonlinear systems with multiple non-commensurate time delays. In 2009 IEEE International Conference on Fuzzy Systems, pages 1989–1994, (2009)

  26. Pan, Y., Wu, Y., Lam, H.K.: Security-based fuzzy control for nonlinear networked control systems with dos attacks via a resilient event-triggered scheme. IEEE Trans. Fuzzy Syst. 30(10), 4359–68 (2022)

    Article  Google Scholar 

  27. dos Santos Gomes, D.C., de Oliveira Serra, G.L.: Interval type-2 fuzzy computational model for real time Kalman filtering and forecasting of the dynamic spreading behavior of novel coronavirus 2019. ISA Trans. 124, 57–68 (2022)

    Article  Google Scholar 

  28. Zhao, N., Shi, P., Xing, W., Lim, C.P.: Resilient adaptive event-triggered fuzzy tracking control and filtering for nonlinear networked systems under denial of service attacks. IEEE Trans. Fuzzy Syst. 30(8), 3191–201 (2021)

    Article  Google Scholar 

  29. Li, Feng, Shengyuan, Xu., Shen, Hao: Fuzzy-model-based \(H_{\infty }\) control for markov jump nonlinear slow sampling singularly perturbed systems with partial information. IEEE Trans. Fuzzy Syst. 27(10), 1952–1962 (2019)

    Article  Google Scholar 

  30. Xiaojie, S., Wang, C., Chang, H., Yang, Y., Assawinchaichote, W.: Event-triggered sliding mode control of networked control systems with Markovian jump parameters. Automatica 125, 109405 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cheng, J., Park, J.H., Wu, Z.G.: A hidden Markov model based control for periodic systems subject to singular perturbations. Syst. Control Lett. 157, 105059 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cheng, J., Wu, Y., Yan, H., Wu, Z.G., Shi, K.: Protocol-based filtering for fuzzy Markov affine systems with switching chain. Automatica 141, 110321 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nguyen, K.H., Kim, S.H.: Improved dissipativity-based sampled-data control synthesis of nonhomogeneous markovian jump fuzzy systems against mismatched fuzzy-basis functions. Inform. Sci. 607, 1439–1464 (2022)

    Article  Google Scholar 

  34. Yanqian Wang, Fu., Chen, Guangming Zhuang, Yang, Guang: Dynamic event-based mixed \(H_{\infty }\) and dissipative asynchronous control for Markov jump singularly perturbed systems. Appl. Math. Comput. 386, 125443 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Zhu, Laixiang, Wang, Yanqian, Zhuang, Guangming, Song, Gongfei: Dynamic-memory event-based asynchronous dissipative filtering for T-S fuzzy singular semi-Markov jump systems against multi-cyber attacks. Appl. Math. Comput. 431, 127352 (2022)

    MathSciNet  MATH  Google Scholar 

  36. Ran, Guangtao, Li, Chuanjiang, Sakthivel, Rathinasamy, Han, Chunsong, Wang, Bohui, Liu, Jian: Adaptive event-triggered asynchronous control for interval type-2 fuzzy Markov jump systems with Cyber-attacks. IEEE Tran. Control Netw. Syst. 9(1), 88–99 (2022)

    Article  Google Scholar 

  37. Han, Xiaojing, Ma, Yuechao, Lei, Fu.: Finite-time dynamic output-feedback dissipative control for singular uncertainty t-s fuzzy systems with actuator saturation and output constraints. J. Frankl. Inst. 357(8), 4543–4573 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhi, Ya.-Li., He, Yong, Min, Wu., Liu, Qingping: New results on dissipativity analysis of singular systems with time-varying delay. Inform. Sci. 479(8), 292–300 (2019)

    Article  MATH  Google Scholar 

  39. Feng, Z., Yang, Y., Lam, H.K.: Extended-dissipativity-based adaptive event-triggered control for stochastic polynomial fuzzy singular systems. IEEE Trans. Fuzzy Syst. 30(8), 3224–3236 (2021)

    Article  Google Scholar 

  40. Ma, Chao, Qiao, Hong: Distributed asynchronous event-triggered consensus of nonlinear multi-agent systems with disturbances: An extended dissipative approach. Neurocomputing 243, 103–114 (2017)

    Article  Google Scholar 

  41. Jiang, Xiangli, Xia, Guihua, Feng, Zhiguang, Jiang, Zhengyi, Zheng-Guang, Wu.: Dissipativity-based consensus tracking of singular multiagent systems with switching topologies and communication delays. IEEE Trans. Cybern. 52(6), 4547–4558 (2022)

    Article  Google Scholar 

  42. Jiafeng, Yu., Shi, Peng, Li, Qinsheng, Xing, Wen, Chadli, Mohammed, Dimirovski, Georgi M.: Fuzzy-based dissipative consensus for multi-agent systems with Markov switching topologies. IFAC-PapersOnLine 53(2), 4127–4131 (2020)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grants 11661028, the Natural Science Foundation of Guangxi under Grant 2020GXNSFAA159141, Guangxi Philosophy and Social Science Programming Project (2022) under Grant 22BTJ001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengzhuo Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Luo, M., Cheng, J. et al. Interval Type-2 Fuzzy Dissipative Control for Multiagent Systems with Markovian Switching Parameters Via Dynamic Event-Triggered and Double-Quantized Schemes. Int. J. Fuzzy Syst. 25, 2020–2035 (2023). https://doi.org/10.1007/s40815-023-01492-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01492-3

Keywords