[Une méthode d'optimisation linéaire de contraintes successives pour les bornes inférieures des constantes paramétriques de coercivité et de stabilité inf–sup]
Nous présentons une méthode pour le calcul de bornes inférieures pour les constantes de stabilité (de coercivité ou d'inf–sup) nécessaires pour les estimateurs d'erreur a posteriori, associées à l'approximation par base réduite d'équations aux dérivées partielles ayant une dépendance affine en les paramétres. La méthode—basée sur une stratégie hors-ligne/en-ligne intéressante pour le calcul temps réel et les cas d'évaluations multiples—réduit le calcul en-ligne à un problème d'optimisation linéaire peu coûteux. La fonction objectif est un développement paramétrique du quotient de Rayleigh. Les contraintes traduisent la stabilité pour un ensemble optimal de paramétres. Nous présentons des résultats numériques pour un problème d'élasticité (coercif) ainsi que pour un problème d'acoustique de type Helmholtz (non-coercif).
We present an approach to the construction of lower bounds for the coercivity and inf–sup stability constants required in a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations. The method, based on an Offline–Online strategy relevant in the reduced basis many-query and real-time context, reduces the Online calculation to a small Linear Program: the objective is a parametric expansion of the underlying Rayleigh quotient; the constraints reflect stability information at optimally selected parameter points. Numerical results are presented for coercive elasticity and non-coercive acoustics Helmholtz problems.
Accepté le :
Publié le :
D.B.P. Huynh 1 ; G. Rozza 2 ; S. Sen 2 ; A.T. Patera 2
@article{CRMATH_2007__345_8_473_0, author = {D.B.P. Huynh and G. Rozza and S. Sen and A.T. Patera}, title = {A successive constraint linear optimization method for lower bounds of parametric coercivity and inf{\textendash}sup stability constants}, journal = {Comptes Rendus. Math\'ematique}, pages = {473--478}, publisher = {Elsevier}, volume = {345}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.09.019}, language = {en}, }
TY - JOUR AU - D.B.P. Huynh AU - G. Rozza AU - S. Sen AU - A.T. Patera TI - A successive constraint linear optimization method for lower bounds of parametric coercivity and inf–sup stability constants JO - Comptes Rendus. Mathématique PY - 2007 SP - 473 EP - 478 VL - 345 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2007.09.019 LA - en ID - CRMATH_2007__345_8_473_0 ER -
%0 Journal Article %A D.B.P. Huynh %A G. Rozza %A S. Sen %A A.T. Patera %T A successive constraint linear optimization method for lower bounds of parametric coercivity and inf–sup stability constants %J Comptes Rendus. Mathématique %D 2007 %P 473-478 %V 345 %N 8 %I Elsevier %R 10.1016/j.crma.2007.09.019 %G en %F CRMATH_2007__345_8_473_0
D.B.P. Huynh; G. Rozza; S. Sen; A.T. Patera. A successive constraint linear optimization method for lower bounds of parametric coercivity and inf–sup stability constants. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 473-478. doi : 10.1016/j.crma.2007.09.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.019/
[1] Automatic choice of global shape functions in structural analysis, AIAA J., Volume 16 (1978), pp. 525-528
[2] Mechanics of Elastic Composites, Chapman & Hall/CRC, Boca Raton, FL, 2004
[3] D.B.P. Huynh, G. Rozza, S. Sen, A.T. Patera, Analysis of a successive constraint method for efficient approximation of lower bounds of parametric coercivity and inf–sup stability constants, M3AS, in preparation
[4] Computation of Eigenvalues and Eigenvectors, Analysis of Numerical Methods, Dover Publications, New York, 1994
[5] A Gershgorin-type lower bound for the smallest singular value, Linear Algebra Appl., Volume 112 (1989), pp. 1-7
[6] Certified real-time solution of parametrized partial differential equations (S. Yip, ed.), Handbook of Materials Modeling, Springer, New York, 2005, pp. 1523-1558
[7] Reduced basis technique for nonlinear analysis of structures, AIAA J., Volume 18 (1980) no. 4, pp. 455-462
[8] The Symmetric Eigenvalue Problem, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1998
[9] Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, J. F. Engrg., Volume 124 (2002) no. 1, pp. 70-80
[10] “Natural norm” a posteriori error estimators for reduced basis approximations, J. Computat. Phys., Volume 217 (2006) no. 1, pp. 37-62
Cité par Sources :
Commentaires - Politique