Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T18:47:30.607Z Has data issue: false hasContentIssue false

3 - The spt-function of Andrews

Published online by Cambridge University Press:  21 July 2017

William Y. C. Chen
Affiliation:
Tianjin University
Anders Claesson
Affiliation:
University of Iceland, Reykjavik
Mark Dukes
Affiliation:
University College Dublin
Sergey Kitaev
Affiliation:
University of Strathclyde
David Manlove
Affiliation:
University of Glasgow
Kitty Meeks
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] S., Ahlgren, Distribution of the partition function modulo composite integers M, Math. Ann. 318 (4) (2000) 795–803.
[2] S., Ahlgren and N., Andersen, Euler-like recurrences for smallest parts functions, Ramanujan J. 36 (1–2) (2015) 237–248.
[3] S., Ahlgren and N., Andersen, Algebraic and transcendental formulas for the smallest parts function, Adv. Math. 289 (2016) 411–437.
[4] S., Ahlgren and M., Boylan, Arithmetic properties of the partition function, Invent. Math. 153 (3) (2003) 487–502.
[5] S., Ahlgren, K., Bringmann and J., Lovejoy, ℓ-adic properties of smallest parts functions, Adv. Math. 228 (1) (2011) 629–645.
[6] S., Ahlgren and K., Ono, Congruences and conjectures for the partition function, In q-Series with Applications to Combinatorics, Number Theory, and Physics, 1–10, Contemp. Math., 291, American Mathematical Society, Providence, RI, 2001.
[7] N., Andersen, Hecke-type congruences for two smallest parts functions, Int. J. Number Theory 9 (3) (2013) 713–728.
[8] G.E., Andrews, Partitions: Yesterday and Today, New Zealand Mathematical Society, Wellington, 1979.
[9] G.E., Andrews, q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra, CBMS Regional Conference Series in Mathematics, 66, American Mathematical Society, Providence, RI, 1986.
[10] G.E., Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[11] G.E., Andrews,Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks, Invent. Math. 169 (1) (2007) 37–73.
[12] G.E., Andrews, The number of smallest parts in the partitions of n, J. Reine Angew. Math. 624 (2008) 133–142.
[13] G.E., Andrews, Concave and convex compositions, Ramanujan J. 31 (1-2) (2013) 67–82.
[14] G.E., Andrews and B.C., Berndt, Ramanujan's Lost Notebook. Part III, Springer, New York, 2012.
[15] G.E., Andrews, S.H., Chan and B., Kim, The odd moments of ranks and cranks, J. Combin. Theory Ser. A 120 (1) (2013) 77–91.
[16] G.E., Andrews, S.H., Chan, B., Kim and R., Osburn, The first positive rank and crank moments for overpartitions, Ann. Combin. 20 (2) (2016) 193–207.
[17] G.E., Andrews, A., Dixit, D., Schultz and A.J., Yee, Overpartitions related to the mock theta function ω(q), arXiv:1603.04352.
[18] G.E., Andrews, A., Dixit and A.J., Yee, Partitions associated with the Ramanujan/ Watson mock theta functions ω(q), ν(q) and ϕ(q), Res. Number Theory 1 (2015) Art. 19.
[19] G.E., Andrews, F.J., Dyson and R.C., Rhoades, On the distribution of the spt-crank, Mathematics 1 (3) (2013) 76–88.
[20] G.E., Andrews and K., Eriksson, Integer Partitions, Cambridge University Press, Cambridge, 2004.
[21] G.E., Andrews and F.G., Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. 18 (2) (1988) 167–171.
[22] G.E., Andrews, F.G., Garvan and J., Liang, Combinatorial interpretations of congruences for the spt-function, Ramanujan J. 29 (1-3) (2012) 321–338.
[23] G.E., Andrews, F.G., Garvan and J., Liang, Self-conjugate vector partitions and the parity of the spt-function, Acta Arith. 158 (3) (2013) 199–218.
[24] G.E., Andrews and K., Ono, Ramanujan's congruences and Dyson's crank, Proc. Natl. Acad. Sci. USA 102 (43) (2005) 15277.
[25] G.E., Andrews, R.C., Rhoades and S.P., Zwegers, Modularity of the concave composition generating function, Algebra Number Theory 7 (9) (2013) 2103–2139.
[26] T.M., Apostol, Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Mathematics, 41, Springer-Verlag, New York, 1990.
[27] A.O.L., Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J. 8 (1967) 14–32.
[28] A.O.L., Atkin and F.G., Garvan, Relations between the ranks and cranks of partitions, Ramanujan J. 7 (1-3) (2003) 343–366.
[29] A.O.L., Atkin and S.M., Hussain, Some properties of partitions. II, Trans. Amer. Math. Soc. 89 (1958) 184–200.
[30] A.O.L., Atkin and P., Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. 4 (3) (1954) 84–106.
[31] J., Banks, A., Barquero-Sanchez, R., Masri and Y., Sheng, The asymptotic distribution of Andrews' smallest parts function, Arch. Math. 105 (6) (2015) 539–555.
[32] E., Belmont, H., Lee, A., Musat and S., Trebat-Leder, ℓ-adic properties of partition functions, Monatsh. Math. 173 (1) (2014) 1–34.
[33] A., Berkovich and F.G., Garvan, Some observations on Dyson's new symmetries of partitions, J. Combin. Theory Ser. A 100 (1) (2002) 61–93.
[34] B.C., Berndt, Number Theory in the Spirit of Ramanujan, Student Mathematical Library, 34, American Mathematical Society, Providence, RI, 2006.
[35] B.C., Berndt, Ramanujan's congruences for the partition function modulo 5, 7, and 11, Int. J. Number Theory 3 (3) (2007) 349–354.
[36] B.C., Berndt, S.H., Chan, Z.G., Liu and H., Yesilyurt, A new identity for (q; q)10 ∞ with an application to Ramanujan's partition congruence modulo 11, Q. J. Math. 55 (1) (2004) 13–30.
[37] C., Bessenrodt and K., Ono, Maximal multiplicative properties of partitions, Ann. Combin. 20 (1) (2016) 59–64.
[38] M., Boylan and J.J., Webb, The partition function modulo prime powers, Trans. Amer. Math. Soc. 365 (4) (2013) 2169–2206.
[39] K., Bringmann, On the explicit construction of higher deformations of partition statistics, Duke Math. J. 144 (2) (2008) 195–233.
[40] K., Bringmann, A., Folsom and K., Ono, q-series and weight 3/2 Maass forms, Compos. Math. 145 (3) (2009) 541–552.
[41] K., Bringmann, F.G., Garvan and K., Mahlburg, Partition statistics and quasiharmonic Maass forms, Int. Math. Res. Not. IMRN (1) (2009) 63–97.
[42] K., Bringmann, J., Lovejoy and R., Osburn, Rank and crank moments for overpartitions, J. Number Theory 129 (7) (2009) 1758–1772.
[43] K., Bringmann, J., Lovejoy and R., Osburn, Automorphic properties of generating functions for generalized rank moments and Durfee symbols, Int. Math. Res. Not. IMRN (2) (2010) 238–260.
[44] K., Bringmann and K., Mahlburg, Inequalities between ranks and cranks, Proc. Amer. Math. Soc. 137 (8) (2009) 2567–2574.
[45] K., Bringmann and K., Mahlburg, Asymptotic inequalities for positive crank and rank moments, Trans. Amer. Math. Soc. 366 (2) (2014) 1073–1094.
[46] K., Bringmann, K., Mahlburg and R.C., Rhoades, Asymptotics for rank and crank moments, Bull. London Math. Soc. 43 (4) (2011) 661–672.
[47] K., Bringmann, K., Mahlburg and R.C., Rhoades, Taylor coefficients of mock- Jacobi forms and moments of partition statistics, Math. Proc. Cambridge Philos. Soc. 157 (2) (2014) 231–251.
[48] J., Bryson, K., Ono, S., Pitman and R.C., Rhoades, Unimodal sequences and quantum and mock modular forms, Proc. Natl. Acad. Sci. USA 109 (40) (2012) 16063–16067.
[49] S.H., Chan and R., Mao, Inequalities for ranks of partitions and the first moment of ranks and cranks of partitions, Adv. Math. 258 (2014) 414–437.
[50] W.Y.C., Chen, Recent developments on log-concavity and q-log-concavity of combinatorial polynomials, In: FPSAC 2010 Conference Talk Slides, http://www.billchen.org/talks/2010-FPSAC.pdf (2010).
[51] W.Y.C., Chen, K.Q., Ji and E.Y.Y., Shen, k-marked Dyson symbols and congruences for moments of cranks, arXiv:1312.2080.
[52] W.Y.C., Chen, K.Q., Ji and W.J.T., Zang, Proof of the Andrews-Dyson- Rhoades conjecture on the spt-crank, Adv. Math. 270 (2015) 60–96.
[53] W.Y.C., Chen, K.Q., Ji and W.J.T., Zang, The spt-crank for ordinary partitions, J. Reine Angew. Math. 711 (2016) 231–249.
[54] W.Y.C., Chen, K.Q., Ji and W.J.T., Zang, Nearly equal distributions of the rank and the crank of partitions, arXiv:1704.00882.
[55] W.Y.C., Chen, L.X.W., Wang and G.Y.B., Xie, Finite differences of the logarithm of the partition function, Math. Comp. 85 (298) (2016) 825–847.
[56] S., Corteel and J., Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (4) (2004) 1623–1635.
[57] G., Csordas, T.S., Norfolk and R.S., Varga, The Riemann hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296 (2) (1986) 521–541.
[58] S., DeSalvo and I., Pak,Log-concavity of the partition function, Ramanujan J. 38 (1) (2015) 61–73.
[59] F., Diamond and J., Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005.
[60] D.K., Dimitrov, Higher order Turán inequalities, Proc. Amer. Math. Soc. 126 (7) (1998) 2033–2037.
[61] D.K., Dimitrov and F.R., Lucas, Higher order Turán inequalities for the Riemann ζ-function, Proc. Amer. Math. Soc. 139 (3) (2011) 1013–1022.
[62] A., Dixit and A.J., Yee, Generalized higher order spt-functions, Ramanujan J. 31 (1-2) (2013) 191–212.
[63] F.J., Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944) 10–15.
[64] F.J., Dyson, Mappings and symmetries of partitions, J. Combin. Theory Ser. A 51 (2) (1989) 169–180.
[65] F.J., Dyson, Partitions and the grand canonical ensemble, Ramanujan J. 29 (1-3) (2012) 423–429.
[66] D.A., Eichhorn and D.M., Hirschhorn, Notes on the spt function of George E. Andrews, Ramanujan J. 38 (1) (2015) 17–34.
[67] A., Folsom, Z.A., Kent and K., Ono, ℓ-adic properties of the partition function, Adv. Math. 229 (3) (2012) 1586–1609.
[68] A., Folsom and K., Ono, The spt-function of Andrews, Proc. Natl. Acad. Sci. USA 105 (51) (2008) 20152–20156.
[69] K.C., Garrett, C., McEachern, T., Frederick and O., Hall-Holt, Fast computation of Andrews' smallest part statistic and conjectured congruences, Discrete Appl. Math. 159 (13) (2011) 1377–1380.
[70] F.G., Garvan, New combinatorial interpretations of Ramanujan's partition congruences mod 5, 7 and 11, Trans. Amer. Math. Soc. 305 (1) (1988) 47–77.
[71] F.G., Garvan, Generalizations of Dyson's rank and non-Rogers-Ramanujan partitions, Manuscripta Math. 84 (3-4) (1994) 343–359.
[72] F.G., Garvan, Congruences for Andrews' smallest parts partition function and new congruences for Dyson's rank, Int. J. Number Theory 6 (2) (2010) 281–309.
[73] F.G., Garvan, Higher order spt-functions, Adv. Math. 228 (1) (2011) 241– 265.
[74] F.G., Garvan, Congruences for Andrews' spt-function modulo powers of 5, 7 and 13, Trans. Amer. Math. Soc. 364 (9) (2012) 4847–4873.
[75] F.G., Garvan, Congruences for Andrews' spt-function modulo 32760 and extension of Atkin's Hecke-type partition congruences, Number Theory and Related Fields, Springer Proc. Math. Stat. 43, Springer, New York, (2013) 165–185.
[76] F.G., Garvan and C., Jennings-Shaffer, The spt-crank for overpartitions, Acta Arith. 166 (2) (2014) 141–188.
[77] F.G., Garvan and C., Jennings-Shaffer, Hecke-type congruences for Andrews' SPT-function modulo 16 and 32, Int. J. Number Theory 10 (2) (2014) 375– 390.
[78] F.G., Garvan and C., Jennings-Shaffer, Exotic Bailey-Slater SPT-functions II: Hecke-Rogers-type double sums and Bailey pairs from groups A, C, E, Adv. Math. 299 (2016) 605–639.
[79] F.G., Garvan and D., Stanton, Sieved partition functions and q-binomial coefficients, Math. Comp. 55 (191) (1990) 299–311.
[80] G., Gasper and M., Rahman, Basic Hypergeometric Series, 2nd ed., Encyclopedia of Mathematics and Its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
[81] D., Hilbert, Theory of Algebraic Invariants, Cambridge University Press, Cambridge, 1993.
[82] M.D., Hirschhorn, On the parity of p(n). II, J. Combin. Theory Ser. A 62 (1) (1993) 128–138.
[83] M.D., Hirschhorn, Ramanujan's partition congruences, Discrete Math. 131 (1-3) (1994) 351–355.
[84] M.D., Hirschhorn, A short and simple proof of Ramanujan's mod 11 partition congruence, J. Number Theory 139 (2014) 205–209.
[85] M.D., Hirschhorn and M.V., Subbarao, On the parity of p(n), Acta Arith. 50 (4) (1988) 355–356.
[86] M.J., Jang and B., Kim, On spt-crank-type functions, Ramanujan J. (2016) doi:10.1007/s11139-016-9838-5.
[87] C., Jennings-Shaffer, Another SPT crank for the number of smallest parts in overpartitions with even smallest part, J. Number Theory 148 (2015) 196–203.
[88] C., Jennings-Shaffer, Higher order SPT-functions for overpartitions, overpartitions with smallest part even, and partitions with smallest part even and without repeated odd parts, J. Number Theory 149 (2015) 285–312.
[89] C., Jennings-Shaffer, Rank and crank moments for partitions without repeated odd parts, Int. J. Number Theory 11 (3) (2015) 683–703.
[90] C., Jennings-Shaffer, Exotic Bailey-Slater spt-functions III: Bailey pairs from groups B, F, G, and J, Acta Arith. 173 (4) (2016) 317–364.
[91] C., Jennings-Shaffer, Exotic Bailey-Slater spt-functions I: Group A, Adv. Math. 305 (2017) 479–514.
[92] C., Jennings-Shaffer, Some smallest parts functions from variations of Bailey's lemma, arXiv:1506.05344.
[93] K.Q., Ji, A combinatorial proof of Andrews' smallest parts partition function, Electron. J. Combin. 15 (1) (2008) #N12.
[94] K.Q., Ji, The combinatorics of k-marked Durfee symbols, Trans. Amer. Math. Soc. 363 (2) (2011) 987–1005.
[95] S.J., Kaavya, Crank 0 partitions and the parity of the partition function, Int. J. Number Theory 7 (3) (2011) 793–801.
[96] B., Kim, E., Kim and J., Seo, On the number of even and odd strings along the overpartitions of n, Arch. Math. (Basel) 102 (4) (2014) 357–368.
[97] I., Kiming and J.B., Olsson, Congruences like Ramanujan's for powers of the partition function, Arch. Math. (Basel) 59 (4) (1992) 348–360.
[98] N., Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate Texts in Mathematics, 97, Springer-Verlag, New York, 1993.
[99] O., Kolberg, Note on the parity of the partition function, Math. Scand. 7 (1959) 377–378.
[100] J.P.S., Kung and G.C., Rota, The invariant theory of binary forms, Bull. Amer. Math. Soc. 10 (1) (1984) 27–85.
[101] K., Kursungöz, Counting k-marked Durfee symbols, Electron. J. Combin. 18 (1) (2011) #P41.
[102] R.P., Lewis, On the ranks of partitions modulo 9, Bull. London Math. Soc. 23 (5) (1991) 417–421.
[103] R.P., Lewis, The ranks of partitions modulo 2, Discrete Math. 167/168 (1997) 445–449.
[104] J., Lovejoy, Rank and conjugation for the Frobenius representation of an overpartition, Ann. Combin. 9 (3) (2005) 321–334.
[105] J., Lovejoy, Rank and conjugation for a second Frobenius representation of an overpartition, Ann. Combin. 12 (1) (2008) 101–113.
[106] R., Mao, Asymptotic inequalities for k-ranks and their cumulation functions, J. Math. Anal. Appl. 409 (2) (2014) 729–741.
[107] R., Masri, Fourier coefficients of harmonic weak Maass forms and the partition function, Amer. J. Math. 137 (4) (2015) 1061–1097.
[108] J.N., O'Brien, Some properties of partitions, with special reference to primes other than 5, 7 and 11, Ph. D. thesis, Durham University, 1965.
[109] K., Ono, Parity of the partition function in arithmetic progressions, J. Reine Angew. Math. 472 (1996) 1–15.
[110] K., Ono, Distribution of the partition function modulo m, Ann. of Math. (2) 151 (1) (2000) 293–307.
[111] K., Ono, TheWeb of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Regional Conference Series in Mathematics, 102, American Mathematical Society, Providence, RI, 2004.
[112] K., Ono, Congruences for the Andrews spt function, Proc. Natl. Acad. Sci. USA 108 (2) (2011) 473–476.
[113] A.E., Patkowski, A strange partition theorem related to the second Atkin– Garvan moment, Int. J. Number Theory 11 (7) (2015) 2191–2197.
[114] A.E., Patkowski, Another smallest part function related to Andrews' spt function, Acta Arith. 168 (2) (2015) 101–105.
[115] A.E., Patkowski, An interesting q-series related to the 4-th symmetrized rank function, arXiv:1310.5282.
[116] P., Paule and C.-S., Radu, A new witness identity for 11|p(11n+6), Preprint, 2017.
[117] P., Paule and C.-S., Radu, A unified algorithmic framework for Ramanujan's congruences modulo powers of 5, 7, and 11, Preprint, 2017.
[118] H., Rademacher, On the partition function p(n), Proc. London Math. Soc. S2-43 (4) 241.
[119] H., Rademacher, Fourier expansions of modular forms and problems of partition, Bull. Amer. Math. Soc. 46 (1940) 59–73.
[120] H., Rademacher, On the expansion of the partition function in a series, Ann. of Math. (2) 44 (1943) 416–422.
[121] C.-S., Radu, A proof of Subbarao's conjecture, J. Reine Angew. Math. 672 (2012) 161–175.
[122] S., Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cambridge Philos. Soc. 19 (1919) 207–210.
[123] R.C., Rhoades, Soft asymptotics for generalized spt-functions, J. Combin. Theory Ser. A 120 (3) (2013) 637–643.
[124] R.C., Rhoades, On Ramanujan's definition of mock theta function, Proc. Natl. Acad. Sci. USA 110 (19) (2013) 7592–7594.
[125] J.M.Z., Rolon, Asymptotics of higher order ospt-functions for overpartitions, Ann. Combin. 20 (1) (2016) 177–191.
[126] N., Santa-Gadea, On some relations for the rank moduli 9 and 12, J. Number Theory 40 (2) (1992) 130–145.
[127] I.R., Sarma, K.H., Reddy, S.R., Gunakala and D.M.G., Comissiong, Relation between the smallest and the greatest parts of the partitions of n, J. Math. Research 3 (4) (2011) 133–140.
[128] B., Sturmfels, Algorithms in Invariant Theory, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1993.
[129] M.V., Subbarao, Some remarks on the partition function, Amer. Math. Monthly 73 (1966) 851–854.
[130] M., Waldherr, Asymptotic for moments of higher ranks, Int. J. Number Theory 9 (3) (2013) 675–712.
[131] L., Wang, New congruences for partitions related to mock theta functions, J. Number Theory 175 (2017) 51–65.
[132] G.N., Watson, Ramanujans Vermutung über Zerfällungszahlen, J. Reine Angew. Math. 179 (1938) 97–128.
[133] L., Winquist, An elementary proof of p(11m + 6) ≡ 0 mod 11, J. Combin. Theory 6 (1969) 56–59.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×