Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T10:10:20.521Z Has data issue: false hasContentIssue false

Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic minimal channel flows

Published online by Cambridge University Press:  17 January 2012

Li Xi
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
Michael D. Graham*
Affiliation:
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
*
Email address for correspondence: graham@engr.wisc.edu

Abstract

Maximum drag reduction (MDR), the asymptotic upper limit of reduction in turbulent friction drag by polymer additives, is the most important unsolved problem in viscoelastic turbulence. Recent studies of turbulence in minimal flow units have identified time intervals showing key features of MDR. These intervals, denoted ‘hibernating turbulence’ are found in both Newtonian and viscoelastic flows. The present study provides a comprehensive examination of this turbulence hibernation phenomenon in the minimal channel geometry, and discusses its impact on the turbulent dynamics and drag reduction. Similarities between hibernating turbulence and MDR are established in terms of both flow statistics (an intermittency factor, mean and fluctuating components of velocity) and flow structure (weak vortices and nearly streamwise-invariant kinematics). Hibernation occurs more frequently at high levels of viscoelasticity, leading to flows that increasingly resemble MDR. Viscoelasticity facilitates the occurrence of hibernation by suppressing the conventional ‘active’ turbulence, but has little influence on hibernation itself. At low Weissenberg number , the average duration of active turbulence intervals is constant, but above a critical value of , the duration decreases dramatically, and accordingly, the fraction of time spent in hibernation increases. This observation can be explained with a simple mathematical model that posits that the lifetime of an active turbulence interval is the time that it takes for the turbulence to stretch polymer molecules to a certain threshold value; once the molecules exceed this threshold, they exert a large enough stress on the flow to suppress the active turbulence. This model predicts an explicit form for the duration as a function of and the simulation results match this prediction very closely. The critical point where hibernation frequency becomes substantially increased coincides with the point where qualitative changes are observed in overall flow statistics – the transition between ‘low-drag-reduction’ and ‘high-drag-reduction’ regimes. Probability density functions of important variables reveal a much higher level of intermittency in the turbulent dynamics after this transition. It is further confirmed that hibernating turbulence is a Newtonian structure during which polymer extension is small. Based on these results, a framework is proposed that explains key transitions in viscoelastic turbulence, especially the convergence toward MDR.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge Science Classics, 2 , Cambridge University Press.Google Scholar
2. Benzi, R., De Angelis, E., L’vov, V. S. & Procaccia, I. 2005 Identification and calculation of the universal asymptote for drag reduction by polymers in wall bounded turbulence. Phys. Rev. Lett. 95, 194502.CrossRefGoogle ScholarPubMed
3. Bhat, S., Pal, K. & Chopra, S. 2000 A study of intermittency and drag reduction in turbulence by dynamic laser light scattering. Exp. Fluids 28 (2), 160164.CrossRefGoogle Scholar
4. Bird, R. B., Curtis, C. F., Armstrong, R. C. & Hassager, O. 1987 Dynamics of polymeric liquids, vol. 2. 2nd edn. John Wiley & Sons.Google Scholar
5. Cai, W. H., Li, F.-C. & Zhang, H. N. 2010 DNS study of decaying homogeneous isotropic turbulence with polymer additives. J. Fluid Mech. 665, 334356.CrossRefGoogle Scholar
6. de Angelis, E., Casciola, C. M., Benzi, R. & Piva, R. 2005 Homogeneous isotropic turbulence in dilute polymers. J. Fluid Mech. 531, 110.CrossRefGoogle Scholar
7. De Angelis, E., Casciola, C. M., L’vov, V. S., Piva, R. & Procaccia, I. 2003 Drag reduction by polymers in turbulent channel flows: energy redistribution between invariant empirical modes. Phys. Rev. E 67, 056312.CrossRefGoogle ScholarPubMed
8. De Angelis, E., Casciola, C. M. & Piva, R. 2002 DNS of wall turbulence: dilute polymers and self-sustaining mechanisms. Comput. Fluids 31, 495507.CrossRefGoogle Scholar
9. Dubief, Y. & Delcayre, F. 2000 On coherent-vortex identification in turbulence. J. Turbul. 1, 122.CrossRefGoogle Scholar
10. Dubief, Y., Terrapon, V. E., White, C. M., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust. 74, 311329.CrossRefGoogle Scholar
11. Dubief, Y., White, C. M., Shaqfeh, E. S. G. & Terrapon, V. E. 2011 Polymer maximum drag reduction: a unique transitional state. Center for Turbulence Research Annual Research Briefs.Google Scholar
12. Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271280.CrossRefGoogle Scholar
13. Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.CrossRefGoogle Scholar
14. Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle ScholarPubMed
15. Flyvbjerg, H. & Petersen, H. G. 1989 Error-estimates on averages of correlated data. J. Chem. Phys. 91, 461466.CrossRefGoogle Scholar
16. Gibson, J. F. 2009 Channelflow Users’ Manual: Release 0.9.18, www.channelflow.org.Google Scholar
17. Gibson, J. F., Halcrow, J. & Cvitanotić, P. 2008 Visualizing the geometry of state-space in plane Couette flow. J. Fluid Mech. 611, 107130.CrossRefGoogle Scholar
18. Gibson, J. F., Halcrow, J. & Cvitanotić, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.CrossRefGoogle Scholar
19. Graham, M. D. 2004 Drag reduction in turbulent flow of polymer solutions. In Rheology Reviews 2004 (ed. Binding, D. M. & Walters, K. ), pp. 143170. British Society of Rheology.Google Scholar
20. Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
21. Housiadas, K. D. & Beris, A. N. 2003 Polymer-induced drag reduction: effects of variations in elasticity and inertia in turbulent viscoelastic channel flow. Phys. Fluids 15, 23692384.CrossRefGoogle Scholar
22. Housiadas, K. D., Beris, A. N. & Handler, R. A. 2005 Viscoelastic effects on higher order statistics and on coherent structures in turbulent channel flow. Phys. Fluids 17, 035106.CrossRefGoogle Scholar
23. Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
24. Jiménez, J., Kawahara, G., Simens, M. P., Nagata, M. & Shiba, M. 2005 Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids 17, 015105.CrossRefGoogle Scholar
25. Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
26. Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
27. Kerswell, R. R. & Tutty, O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.CrossRefGoogle Scholar
28. Kim, K., Adrian, R. J., Balachandar, S. & Sureshkumar, R. 2008 Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. Phys. Rev. Lett. 100, 134504.CrossRefGoogle ScholarPubMed
29. Kim, K., Li, C. F., Sureshkumar, R., Balachandar, S. & Adrian, R. J. 2007 Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281299.CrossRefGoogle Scholar
30. Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully-developed channel flow at low Reynolds-number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
31. Li, C. F., Sureshkumar, R. & Khomami, B. 2006a Influence of rheological parameters on polymer induced turbulent drag reduction. J. Non-Newtonian Fluid Mech. 140, 2340.CrossRefGoogle Scholar
32. Li, W. & Graham, M. D. 2007 Polymer induced drag reduction in exact coherent structures of plane Poiseuille flow. Phys. Fluids 19, 083101.CrossRefGoogle Scholar
33. Li, W., Stone, P. A. & Graham, M. D. 2005 Viscoelastic nonlinear travelling waves and drag reduction in plane Poiseuille flow. In IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions (ed. Mullin, T. & Kerswell, R. R. ). pp. 289312. Springer.CrossRefGoogle Scholar
34. Li, W., Xi, L. & Graham, M. D. 2006b Nonlinear travelling waves as a framework for understanding turbulent drag reduction. J. Fluid Mech. 565, 353362.CrossRefGoogle Scholar
35. McComb, W. D. 1990 The Physics of Fluid Turbulence. Oxford University Press.CrossRefGoogle Scholar
36. Min, T., Choi, H. & Yoo, J. Y. 2003a Maximum drag reduction in a turbulent channel flow by polymer additives. J. Fluid Mech. 492, 91100.CrossRefGoogle Scholar
37. Min, T., Yoo, J. Y., Choi, H. & Joseph, D. D. 2003b Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213238.CrossRefGoogle Scholar
38. Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.CrossRefGoogle Scholar
39. Nishioka, M. & Asai, M. 1985 Some observations of the subcritical transition in plane Poiseuille flow. J. Fluid Mech. 150, 441450.CrossRefGoogle Scholar
40. Oldaker, D. K. & Tiederman, W. G. 1977 Spatial structure of viscous sublayer in drag-reducing channel flows. Phys. Fluids 20, S133S144.CrossRefGoogle Scholar
41. Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press.Google Scholar
42. Perlekar, P., Mitra, D. & Pandit, R. 2006 Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence. Phys. Rev. Lett. 97 264501.CrossRefGoogle ScholarPubMed
43. Peyret, R. 2002 Spectral Methods for Incompressible Viscous Flow. Springer.CrossRefGoogle Scholar
44. Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
45. Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical, and mirror-symmetric travelling waves in pipe flow. Phys. Rev. Lett. 99, 074502.CrossRefGoogle ScholarPubMed
46. Procaccia, I., L’vov, V. S. & Benzi, R. 2008 Colloquium: theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80, 225247.CrossRefGoogle Scholar
47. Ptasinski, P. K., Boersma, B. J., Nieuwstadt, F. T. M., Hulsen, M. A., van den Brule, B. H. A. A. & Hunt, J. C. R. 2003 Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490, 251291.CrossRefGoogle Scholar
48. Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
49. Samanta, G., Housiadas, K. D., Handler, R. A. & Beris, A. N. 2009 Effects of viscoelasticity on the probability density functions in turbulent channel flow. Phys. Fluids 21, 115106.CrossRefGoogle Scholar
50. Samanta, G., Oxberry, G. M., Beris, A. N., Handler, R. A. & Housiadas, K. D. 2008 Time-evolution K-L analysis of coherent structures based on DNS of turbulent Newtonian and viscoelastic flows. J. Turbul. 9 (41), 125.CrossRefGoogle Scholar
51. Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.CrossRefGoogle ScholarPubMed
52. Schneider, T. M., Gibson, J. F. & Burke, J. 2010 Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501.CrossRefGoogle ScholarPubMed
53. Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.CrossRefGoogle Scholar
54. Smith, C. R. & Metzler, S. P. 1983 The characteristics of low-speed in the near-wall region of a turbulent boundary-layer. J. Fluid Mech. 129, 2754.CrossRefGoogle Scholar
55. Sreenivasan, K. R. & White, C. M. 2000 The onset of drag reduction by dilute polymer additives, and the maximum drag reduction asymptote. J. Fluid Mech. 409, 149164.CrossRefGoogle Scholar
56. Stone, P. A. & Graham, M. D. 2003 Polymer dynamics in a model of the turbulent buffer layer. Phys. Fluids 15, 12471256.CrossRefGoogle Scholar
57. Stone, P. A., Roy, A., Larson, R. G., Waleffe, F. & Graham, M. D. 2004 Polymer drag reduction in exact coherent structures of plane shear flow. Phys. Fluids 16, 34703482.CrossRefGoogle Scholar
58. Stone, P. A., Waleffe, W. & Graham, M. D. 2002 Toward a structural understanding of turbulent drag reduction: nonlinear coherent states in viscoelastic shear flows. Phys. Rev. Lett. 89, 208301.CrossRefGoogle Scholar
59. Sureshkumar, R. & Beris, A. N. 1997 Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9, 743755.CrossRefGoogle Scholar
60. Tamano, S., Graham, M. D. & Morinishi, Y. 2011 Streamwise variation of turbulent dynamics in boundary layer flow of drag-reducing fluid. J. Fluid Mech. 686, 352377.CrossRefGoogle Scholar
61. Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.CrossRefGoogle Scholar
62. van Veen, L., Kida, S. & Kawahara, G. 2006 Periodic motion representing isotropic turbulence. Fluid Dyn. Res. 38 (1), 1946.CrossRefGoogle Scholar
63. Virk, P. S. 1971 Elastic sublayer model for drag reduction by dilute solutions of linear macromolecules. J. Fluid Mech. 45, 417440.CrossRefGoogle Scholar
64. Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21, 625656.CrossRefGoogle Scholar
65. Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.CrossRefGoogle Scholar
66. Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.CrossRefGoogle Scholar
67. Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 41404143.CrossRefGoogle Scholar
68. Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.CrossRefGoogle Scholar
69. Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171534.CrossRefGoogle Scholar
70. Wang, J., Gibson, J. F. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501.CrossRefGoogle ScholarPubMed
71. Warholic, M. D., Heist, D. K., Katcher, M. & Hanratty, T. J. 2001 A study with particles image velocimetry of the influence of drag-reducing polymers on the structure of turbulence. Exp. Fluids 31, 474483.CrossRefGoogle Scholar
72. Warholic, M. D., Massah, H. & Hanratty, T. J. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27, 461472.CrossRefGoogle Scholar
73. Webber, G. A., Handler, R. A. & Sirovich, L. 1997 The Karhunen-Loéve decomposition of minimal channel flow. Phys. Fluids 9, 10541066.CrossRefGoogle Scholar
74. Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
75. White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.CrossRefGoogle Scholar
76. White, C. M., Somandepalli, V. S. R. & Mungal, M. G. 2004 The turbulence structure of drag-reduced boundary layer flow. Exp. Fluids 36, 6269.CrossRefGoogle Scholar
77. Wu, J. Z., Xiong, A. K. & Yang, Y. T. 2005 Axial stretching and vortex definition. Phys. Fluids 17, 038108.CrossRefGoogle Scholar
78. Xi, L. 2009 Nonlinear dynamics and instabilities of viscoelastic fluid flows. PhD thesis, University of Wisconsin-Madison.Google Scholar
79. Xi, L. & Graham, M. D. 2010a Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett. 104, 218301.CrossRefGoogle ScholarPubMed
80. Xi, L. & Graham, M. D. 2010b Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units. J. Fluid Mech. 647, 421452.CrossRefGoogle Scholar
81. Xi, L. & Graham, M. D. 2012 Dynamics on the laminar-turbulent boundary and the origin of the maximum drag reduction asymptote. Phys. Rev. Lett. 108, 028301.CrossRefGoogle ScholarPubMed
82. Yang, S.-Q. & Dou, G. 2005 Drag reduction in a flat-plate boundary layer flow by polymer additives. Phys. Fluids 17 (6), 065104.CrossRefGoogle Scholar
83. Yang, S.-Q. & Dou, G.-R. 2008 Modelling of viscoelastic turbulent flow in channel and pipe. Phys. Fluids 20 (6), 065105.CrossRefGoogle Scholar
84. Yang, S.-Q. & Dou, G. 2009 Turbulent drag reduction with polymer additive in rough pipes. J. Fluid Mech. 642, 279294.CrossRefGoogle Scholar