Article contents
DEMONSTRATING THE FEASIBILITY OF MULTIMODAL NEUROIMAGING DATA CAPTURE WITH A WEARABLE ELECTOENCEPHALOGRAPHY + FUNCTIONAL NEAR-INFRARED SPECTROSCOPY (EEG+FNIRS) IN SITU
Published online by Cambridge University Press: 27 July 2021
Abstract
We developed a wearable experimental sensor setup featuring multimodal EEG+fNIRS neuroimaging applicable for in situ experiments of human behavior in interaction with technology. A low-cost electroencephalography (EEG) was integrated with a wearable functional Near-Infrared Spectroscopy (fNIRS) system, which we present in two parts. Paper A provide an exhaustive description of setup infrastructure, data synchronization process, a procedure for usage, including sensor application, and ensuring high signal quality. This paper (Paper B) demonstrate the setup';s usability in three distinct use cases: a conventional human-computer interaction experiment, an in situ driving experiment where participants drive a car in the city and on the highway, and an ashtanga vinyasa yoga practice in situ. Data on cognitive load from highly ecologically valid experimental setups are presented, and we discuss lessons learned. These include acceptable and unacceptable artefacts, data quality, and constructs possible to investigate with the setup.
Keywords
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2021. Published by Cambridge University Press
References
- 1
- Cited by