Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Affine Invariant Detection: Edge Maps, Anisotropic Diffusion, and Active Contours

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In this paper we undertake a systematic investigation of affine invariant object detection and image denoising. Edge detection is first presented from the point of view of the affine invariant scale-space obtained by curvature based motion of the image level-sets. In this case, affine invariant maps are derived as a weighted difference of images at different scales. We then introduce the affine gradient as an affine invariant differential function of lowest possible order with qualitative behavior similar to the Euclidean gradient magnitude. These edge detectors are the basis for the extension of the affine invariant scale-space to a complete affine flow for image denoising and simplification, and to define affine invariant active contours for object detection and edge integration. The active contours are obtained as a gradient flow in a conformally Euclidean space defined by the image on which the object is to be detected. That is, we show that objects can be segmented in an affine invariant manner by computing a path of minimal weighted affine distance, the weight being given by functions of the affine edge detectors. The gradient path is computed via an algorithm which allows to simultaneously detect any number of objects independently of the initial curve topology. Based on the same theory of affine invariant gradient flows we show that the affine geometric heat flow is minimizing, in an affine invariant form, the area enclosed by the curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Guichard, F., Lions, P. L. and Morel, J. M.: Axioms and fundamental equations of image processing, Arch. Rational Mech. 123 (1993), 199–257.

    Google Scholar 

  2. Alvarez, L., Lions, P. L. and Morel, J. M.: Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal. 29 (1992), 845–866.

    Google Scholar 

  3. Angenent, S.: Parabolic equations for curves on surfaces, Part II. Intersections, blow-up, and generalized solutions, Ann. of Math. 133 (1991), 171–215.

    Google Scholar 

  4. Angenent, S., Sapiro, G. and Tannenbaum, A.: On the affine heat flow for non-convex curves, J. Amer. Math. Soc. 11 (1998), 601–634.

    Google Scholar 

  5. Ballester, C., Caselles, V. and Gonzalez, M.: Affine invariant segmentation by variational method, SIAM J. Appl. Math. 56 (1996), 294–325.

    Google Scholar 

  6. Blake, A. and Yuille, A.: Active Vision, MIT Press, Cambridge, 1992.

    Google Scholar 

  7. Blaschke, W.: Vorlesungen über Differentialgeometrie II, Springer, Berlin, 1923.

    Google Scholar 

  8. Bookstein, F. L.: Fitting conic sections to scattered data, Comput. Graph. Image Process. 9 (1979), 56–71.

    Google Scholar 

  9. Calabi, E., Olver, P. J. and Tannenbaum, A.: Affine geometry, curve flows, and invariant numerical approximations, Adv. Math. 124 (1996), 154–196.

    Google Scholar 

  10. Calabi, E., Olver, P. J., Shakiban, C., Tannenbaum, A. and Haker, S.: Differential and numerical invariant signature curves applied to object recognition, Internat. J. Computer Vision 26 (1998), 107–135.

    Google Scholar 

  11. Caselles, V., Catte, F., Coll, T. and Dibos, F.: A geometric model for active contours, Numer. Math. 66 (1993), 1–31.

    Google Scholar 

  12. Caselles, V., Kimmel, R. and Sapiro, G.: Geodesic active contours, Internat. J. Computer Vision 22(1) (1997), 61–79. Also in Proc. ICCV, Cambridge, MA, June 1995.

    Google Scholar 

  13. Caselles, V., Kimmel, R., Sapiro, G. and Sbert, C.: Minimal surfaces: A three dimensional segmentation approach, IEEE-PAMI 19(4) (1997), 394–398.

    Google Scholar 

  14. Caselles, V., Kimmel, R., Sapiro, G. and Sbert, C.: Three dimensional object modeling via minimal surfaces, in: Proc. ECCV, Cambridge, UK, April 1996.

  15. Chen, Y. G., Giga, Y. and Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991), 749–786.

    Google Scholar 

  16. Chopp, D.: Computing minimal surfaces via level set curvature flows, J. Comput. Physics 106 (1993), 77–91.

    Google Scholar 

  17. Cohen, L. D.: On active contour models and balloons, CVGIP: Image Understanding 53 (1991), 211–218.

    Google Scholar 

  18. Cohen, I., Cohen, L. D. and Ayache, N.: Using deformable surfaces to segment 3D images and infer differential structure, CVGIP: Image Understanding 56 (1992), 242–263.

    Google Scholar 

  19. Cohignac, T., Lopez, C. and Morel, J. M.: Integral and local affine invariant parametrizations and applications to shape recognition, in: Proc. 12th IEEE Int. Conf. Pattern Recognition, Jerusalem, 1994.

  20. Crandall, M. G., Ishii, H. and Lions, P. L.: User's guide to viscosity solutions of second order partial linear differential equations, Bull. Amer. Math. Soc. 27 (1992), 1–67.

    Google Scholar 

  21. Dubrovin, B. A., Fomenko, A. T. and Novikov, S. P.: Modern Geometry — Methods and Applications I, Springer-Verlag, New York, 1984.

    Google Scholar 

  22. Epstein, C. L. and Gage, M.: The curve shortening flow, in: A. Chorin and A. Majda (eds), Wave Motion: Theory, Modeling, and Computation, Springer-Verlag, New York, 1987.

    Google Scholar 

  23. Evans, L. C. and Spruck, J.: Motion of level sets by mean curvature, I, J. Differential Geom. 33 (1991), 635–681.

    Google Scholar 

  24. Faugeras, O.: On the evolution of simple curves of the real projective plane, C.R. Acad. Sci. Paris 317 (1993), 565–570.

    Google Scholar 

  25. Faugeras, O.: Cartan's moving frame method and its application on the geometry and evolution of curves in the Euclidean, affine, and projective planes, in: J. L. Mundy, A. Zisserman and D. Forsyth (eds), Applications of Invariance in Computer Vision, Springer-Verlag, New York, 1994, pp. 11–46.

    Google Scholar 

  26. Faugeras, O. and Keriven, R.: Scale-spaces and affine curvature, in: R. Mohr and C. Wu (eds), Proc. Europe-China Workshop on Geometrical Modeling and Invariants for Computer Vision, 1995, pp. 17–24.

  27. Forsyth, D., Mundy, J. L., Zisserman, A. and Brown C. M.: Projectively invariant representations using implicit curves, Image Vision Comput. 8 (1990), 130–136.

    Google Scholar 

  28. Forsyth, D., Mundy, J. L., Zisserman, A., Coelho, C., Heller, A. and Rothwell, C.: Invariant description of object representation and pose, IEEE PAMI 13 (1991), 971–991.

    Google Scholar 

  29. Fua, P. and Leclerc, Y. G.: Model driven edge detection, Machine Vision Appl. 3 (1990), 45–56.

    Google Scholar 

  30. Gage, M. and Hamilton, R. S.: The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), 69–96.

    Google Scholar 

  31. Grayson, M.: The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), 285–314.

    Google Scholar 

  32. Grayson, M.: Shortening embedded curves, Ann. of Math. 129 (1989), 285–314.

    Google Scholar 

  33. Guggenheimer, H. W.: Differential Geometry, McGraw-Hill, New York, 1963.

    Google Scholar 

  34. Gurtin, M. E.: Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Univ. Press, New York, 1993.

    Google Scholar 

  35. Kass, M., Witkin, A. and Terzopoulos, D.: Snakes: Active contour models, Internat. J. Comput. Vision 1 (1988), 321–331.

    Google Scholar 

  36. Kichenassamy, S., Kumar, A., Olver, P. J., Tannenbaum, A. and Yezzi, A.: Gradient flows and geometric active contour models, in: Proc. ICCV, Cambridge, MA, June 1995, pp. 810–815.

  37. Kichenassamy, S., Kumar, A., Olver, P. J., Tannenbaum, A. and Yezzi, A.: Conformal curvature flows: From phase transitions to active vision, Arch. Rational Mech. Anal. 134 (1996), 275–301.

    Google Scholar 

  38. Kimia, B. B., Tannenbaum, A. and Zucker, S.W.: Toward a computational theory of shape: An overview, Lecture Notes in Comput. Sci. 427 (1990), 402–407.

    Google Scholar 

  39. Kimia, B. B., Tannenbaum, A. and Zucker, S.W.: Shapes, shocks, and deformations, I, Internat. J. Comput. Vision 15 (1995), 189–224.

    Google Scholar 

  40. Kimmel, R.: Invariant framework for differential affine signatures, in: Proc. ICPR '96.

  41. Kimmel, R., Amir, A. and Bruckstein, A. M.: Finding shortest paths on surfaces using level sets propagation, IEEE-PAMI 17(1) (1995), 635–640.

    Google Scholar 

  42. Kimmel, R., Kiryati, N. and Bruckstein, A. M.: Sub-pixel distance maps and weighted distance transforms, J. Math. Imaging and Vision, Special Issue on Topology and Geometry in Computer Vision, 6 (1996), 223–233.

    Google Scholar 

  43. Lindeberg, T.: Scale-Space Theory in Computer Vision, Kluwer Acad. Publ., Dordrecht, 1994.

    Google Scholar 

  44. Lindeberg, T. and Garding, J.: Shape-adapted smoothing in estimation of 3D depth cues from affine distortions of local 2D structures, in: Proc. ECCV, Stockholm, Sweden, May 1994.

  45. Malladi, R. and Sethian, J. A.: A unified approach to noise removal, image enhancement, and shape recovery, IEEE Trans. Image Processing 5 (1996), 1554–1568.

    Google Scholar 

  46. Malladi, R., Sethian, J. A. and Vemuri, B. C.: Evolutionary fronts for topology independent shape modeling and recovery, in: Proc. of the 3rd ECCV, Stockholm, Sweden, 1994, pp. 3–13.

  47. Malladi, R., Sethian, J. A. and Vemuri, B. C.: Shape modeling with front propagation: A level set approach, IEEE Trans. on PAMI 17 (1995), 158–175.

    Google Scholar 

  48. Malladi, R., Sethian, J. A. and Vemuri, B. C.: A fast level set based algorithm for topology independent shape modeling, J. Math. Imaging and Vision 6 (1996), 269–289.

    Google Scholar 

  49. McInerney, T. and Terzopoulos, D.: Topologically adaptable snakes, in: Proc. ICCV, Cambridge, MA, June 1995.

  50. Mumford, D. and Shah, J.: Optimal approximations by piecewise smooth functions and variational problems, Comm. Pure Appl. Math. 42 (1989), 577–685.

    Google Scholar 

  51. Mundy, J. L. and Zisserman, A. (eds): Geometric Invariance in Computer Vision, MIT Press, 1992.

  52. Niessen, W. J., ter Haar Romeny, B.M., Florack, L. M. J. and Salden, A. H.: Nonlinear diffusion of scalar images using well-posed differential operators, in: Proceedings CVPR, IEEE Press, 1994, pp. 92–97.

  53. Olver, P. J.: Applications of Lie Groups to Differential Equations, 2nd edn, Springer-Verlag, New York, 1993.

    Google Scholar 

  54. Olver, P. J.: Equivalence, Invariants, and Symmetry, Cambridge Univ. Press, Cambridge, UK, 1995.

    Google Scholar 

  55. Olver, P. J., Sapiro, G. and Tannenbaum, A.: Differential invariant signatures and flows in computer vision: A symmetry group approach, in [62].

    Google Scholar 

  56. Olver, P. J., Sapiro, G. and Tannenbaum, A.: Affine invariant edge maps and active contours, Geometry Center Technical Report 90, University of Minnesota, October 1995.

  57. Olver, P. J., Sapiro, G. and Tannenbaum, A.: Affine invariant detection: Edges, active contours, and segments, in: Proc. Computer Vision Pattern Recognition, San Francisco, June 1996, pp. 520–525.

  58. Olver, P. J., Sapiro, G. and Tannenbaum, A.: Invariant geometric evolutions of surfaces and volumetric smoothing, SIAM J. Appl. Math. 57 (1997), 176–194.

    Article  Google Scholar 

  59. Osher, S. J. and Sethian, J. A.: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), 12–49.

    Google Scholar 

  60. Pauwels, E. J., Fiddelaers, P. and Van Gool, L. J.: Shape-extraction for curves using geometry-driven diffusion and functional optimization, in: Proc. ICCV, Cambridge, MA, June 1995.

  61. Perona, P. and Malik, J.: Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Machine Intell. 12 (1990), 629–639.

    Google Scholar 

  62. Romeny, B. (ed.): Geometry Driven Diffusion in Computer Vision, Kluwer Acad. Publ., Dordrecht, 1994.

    Google Scholar 

  63. Rudin, L. I., Osher, S. and Fatemi, E.: Nonlinear total variation based noise removal algorithms, Physica D 60 (1992), 259–268.

    Google Scholar 

  64. Sapiro, G., Kimmel, R., Shaked, D., Kimia, B. B. and Bruckstein, A. M.: Implementing continuous-scale morphology via curve evolution, Pattern Recog. 26(9) (1993), 1363–1372.

    Google Scholar 

  65. Sapiro, G. and Tannenbaum, A.: On affine plane curve evolution, J. Funct. Anal. 119(1) (1994), 79–120.

    Google Scholar 

  66. Sapiro, G. and Tannenbaum, A.: Affine invariant scale-space, Internat. J. Comput. Vision 11(1) (1993), 25–44.

    Google Scholar 

  67. Sapiro, G. and Tannenbaum, A.: Image smoothing based on an affine invariant flow, in: Proceedings of Conference on Information Sciences and Systems, Johns Hopkins University, March 1993.

  68. Sapiro, G. and Tannenbaum, A.: On invariant curve evolution and image analysis, Indiana Univ. Math. J. 42 (1993), 95–1009.

    Google Scholar 

  69. Sapiro, G. and Tannenbaum, A.: Area and length preserving geometric invariant scale-spaces, IEEE Trans. PAMI 17(1) (1995), 67–72.

    Google Scholar 

  70. Sapiro, G., Tannenbaum, A., You, Y. L. and Kaveh, M.: Experiments on geometric image enhancement, in: First IEEE-International Conference on Image Processing, Austin-Texas, November 1994.

  71. Shah, J.: Recovery of shapes by evolution of zero-crossings, Technical Report, Math. Dept. Northeastern Univ., Boston, MA, 1995.

    Google Scholar 

  72. Soner, H. M.: Motion of a set by the curvature of its boundary, J. Differential Equations 101 (1993), 313–372.

    Google Scholar 

  73. Szeliski, R., Tonnesen, D. and Terzopoulos, D.: Modeling surfaces of arbitrary topology with dynamic particles, in: Proc. CVPR, 1993, pp. 82–87.

  74. Sethian, J. A.: Curvature and the evolution of fronts, Comm. Math. Phys. 101 (1985), 487–499.

    Google Scholar 

  75. Sethian, J. A.: A review of recent numerical algorithms for hypersurfaces moving with curvature dependent flows, J. Differential Geom. 31 (1989), 131–161.

    Google Scholar 

  76. Tek, H. and Kimia, B. B.: Image segmentation by reaction-diffusion bubbles, in: Proc. ICCV, Cambridge, MA, June 1995.

  77. Terzopoulos, D., Witkin, A. and Kass, M.: Constraints on deformable models: Recovering 3D shape and nonrigid motions, Artif. Intell. 36 (1988), 91–123.

    Google Scholar 

  78. Torre, V. and Poggio, T.: On edge detection, IEEE Trans. PAMI 8 (1986), 147–163.

    Google Scholar 

  79. Van Gool, L., Moons, T. and Ungureanu, D.: Affine/photometric invariants for planar intensity patterns, in: Proc. ECCV, Cambridge, UK, April 1996, pp. 642–651.

  80. Weiss, I.: Geometric invariants and object recognition, Internat. J. Comput. Vision (1993), 207–231.

  81. Whitaker, R. T.: Volumetric deformable models: Active blobs, ECRC TR 94–25, 1994.

  82. Whitaker, R. T.: Algorithms for implicit deformable models, in: Proc. ICCV'95, Cambridge, MA, June 1995.

  83. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P. and Tannenbaum, A.: Geometric snakes for edge detection and segmentation of medical imagery, IEEE Trans. Medical Imaging 16 (1997), 199–210.

    Article  Google Scholar 

  84. Yezzi, A., Kichenassamy, S., Olver, P. and Tannenbaum, A.: A gradient surface approach to 3D segmentation, in: Proceedings of 49th IS&T, Society for Imaging Science and Technology, Springfield, VA, 1996, pp. 305–307.

    Google Scholar 

  85. Zhu, S. C., Lee, T. S. and Yuille, A. L.: Region competition: Unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation, in: Proc. ICCV, Cambridge, MA, June 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olver, P.J., Sapiro, G. & Tannenbaum, A. Affine Invariant Detection: Edge Maps, Anisotropic Diffusion, and Active Contours. Acta Applicandae Mathematicae 59, 45–77 (1999). https://doi.org/10.1023/A:1006295328209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006295328209