Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Geometric Calibration of Robots with Flexible Joints and Links

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a general methodology to calibrate the geometric and flexibility parameters of robots with flexible joints and links. The method uses the classical description of rigid robots, description of the shape of links, and definition of the elasticity parameters. The generalized Jacobian matrix corresponding to the geometric and flexibility parameters is obtained, using the flexible transformation matrices between successive links. The reaction forces and moments on the links and joints are obtained using a customized recursive Newton–Euler algorithm, similar to that used in the computation of the inverse dynamic model. The calibration of the PA-10 robot of Mitsubishi is presented by simulation and practical experimentation. We show that taking into account the joint flexibility for this robot allows us to improve its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Besnard, S.: Etalonnage géométrique des robots série et parallèles, Thèse de Doctorat, Université de Nantes, France, 2000.

    Google Scholar 

  2. Caenen, J. L.: Contribution à l'identification des paramètres géométriques et non géométriques d'un modèle de robot. Application à l'amélioration de la précision statique, Thèse de Doctorat, Université de Valenciennes et du Hainaut-Cambresis, France, 1993.

    Google Scholar 

  3. Damak, M.: Théorie et instrumentation pour l'étalonnage statique des robots: Vers une programmation hors-ligne industriellement plus efficace, Thèse de Doctorat, École Nationale Supérieure d'Arts et Métiers, Lille, France, 1996.

    Google Scholar 

  4. Drouet, P.: Modélisation, identification et compensation des erreurs de positionnement de manipulateurs à très haute précision sous chargement variable: Application à un positionneur médical de patients pour le traitement du cancer par protonthérapie, Thèse de Doctorat, Université de Poitiers, France, 1999.

    Google Scholar 

  5. Goulet, J. and Boutin J.-P.: Aide Mémoire de Résistance des Matériaux, Dunod, Paris, 1996.

    Google Scholar 

  6. Gourdeau, R., Cloutier, G. M., and Laflamme, J.: Parameter identification of a semi-flexible kinematic model for serial manipulators, Robotica 14 (1996), 311–319.

    Google Scholar 

  7. Hayati, S. A.: Robot arm geometric link calibration, in: Proc. of the 27th IEEE Conf. on Decision and Control, Austin, TX, pp. 798–800.

  8. Judd, R. P. and Knasinski, A. B.: A technique to calibrate industrial robots with experimental verification, IEEE Trans. Robotics Automat. 6(1) (1990).

  9. Khalil, W., Besnard, S., and Lemoine, Ph.: Comparison study of the geometric parameters calibration methods, Internat. J. Robotics Automat. 15(2) (2000), 56–67.

    Google Scholar 

  10. Khalil, W. and Dombre, E.: Modeling, Identification and Control of Robots, Hermes Penton Science, London, 2002.

    Google Scholar 

  11. Khalil, W. and Gautier, M.: Calculation of the identifiable parameters for robots calibration, in: Proc. of the 9th IFAC/IFORS Symposium on Identification and System Parameter Estimation, Budapest, Hongry, 1991, pp. 888–892.

  12. Khalil, W. and Kleinfinger, J. F.: A new geometric notation for open and closed loop robots, in: Proc. of the 1986 IEEE Internat. Conf. on Robotics and Automation, San Francisco, CA, 1986, pp. 1174–1180.

  13. Khalil, W. and Kleinfinger, J. F.:Minimum operations and minimum parameters of the dynamic model of tree structure robots, IEEE J. Robotics Automat. 3(6) (1987), 517–526.

    Google Scholar 

  14. Khalil, W. and Lemoine, Ph.: Gecaro: A system for the geometric calibration of robots, APIIJesa 33(5/6) (1999), 717–739.

    Google Scholar 

  15. Laroze, S.: Résistance des Matériaux et Structures. Tome 2: Théorie des Poutres, 2nd edn, Eyrolles et Masson, Paris, 1980.

    Google Scholar 

  16. Luh, J. Y. S., Walker, M. W., and Paul, R. C. P.: Resolved-acceleration control of mechanical manipulators, IEEE Trans. Automat. Control 25(3) (1980), 468–474.

    Google Scholar 

  17. Meghdari, A.: A variational approach for modeling flexibility effects in manipulator arms, Robotica 9 (1991), 213–217.

    Google Scholar 

  18. Pujo, P.: Contribution à la définition d'une modélisation technologique des robots industriels, Thèse de Doctorat, Université d'Aix Marseille III, France, 1994.

    Google Scholar 

  19. Tang, S. and Wang, C.-C.: Computation of effects of link deflections and joint compliance on robot positioning, in: Proc. of the 1987 IEEE Internat. Conf. on Robotics and Automation, Raleigh, NC, 1987, pp. 910–915.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, W., Besnard, S. Geometric Calibration of Robots with Flexible Joints and Links. Journal of Intelligent and Robotic Systems 34, 357–379 (2002). https://doi.org/10.1023/A:1019687400225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019687400225