Abstract
This paper presents an exploratorymultiobjective evolutionary algorithm (EMOEA)that integrates the features of tabu search andevolutionary algorithm for multiobjective (MO)optimization. The method incorporates the taburestriction in individual examination andpreservation in order to maintain the searchdiversity in evolutionary MO optimization,which subsequently helps to prevent the searchfrom trapping in local optima as well as topromote the evolution towards the globaltrade-offs concurrently. In addition, a newlateral interference is presented in the paperto distribute nondominated individuals alongthe discovered Pareto-front uniformly. Unlikemany niching or sharing methods, the lateralinterference can be performed without the needof parameter settings and can be flexiblyapplied in either the parameter or objectivedomain. The features of the proposed algorithmare examined based upon three benchmarkproblems. Experimental results show that EMOEAperforms well in searching and distributingnondominated solutions along the trade-offsuniformly, and offers a competitive behavior toescape from local optima in a noisyenvironment.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Areibi, S. & Vannelli, A. (1993). Circuit Partitioning Using a Tabu Search Approach. IEEE International Symposium on Circuits and Systems 3: 1643–1646.
Beyer, D. A. & Ogier, R. G. (1991). Tabu Learning: A Neural Network Search Method for Solving Nonconvex Optimization Problems. IEEE International Joint Conference on Neural Networks 2: 953–961.
Braglia, M. & Melloni, R. (1995). Tabu Search for the Single Machine Sequencing Problem with Ready Times. INRIA/IEEE Symposium on Emerging Technologies and Factory Automation 2: 395–403.
Coello Coello, C. A. (1996). An Empirical Study of Evolutionary Techniques for Multiobjective Optimization in Engineering Design. Ph.D. Thesis, Department of Computer Science, Tulane University, New Orleans, LA.
Coello Coello, C. A., Van Veldhuizen, D. A. & Lamont, G. B. (2002). Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers.
Collard, P. & Escazut, C. (1995). Genetic Operators in a Dual Genetic Algorithm. International Conference on Tools and Artificial Intelligence: 12–19.
Cvetkovic, D. & Parmee, I. C. (2002). Preferences and Their Application in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation 6(1): 42–57.
De Falco, I., Del Balio, R., Tarantino, E. & Vaccaro, R. (1994). Improving Search by Incorporating Evolution Principles in Parallel Tabu Search. IEEE Proceedings of the Congress on Evolutionary Computation 2: 823–828.
Deb, K. (1999). Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problem. Journal of Evolutionary Computation 7(3): 205–230 (The MIT Press).
Deb, K. & Goldberg, D. E. (1989). An investigation of Niche and Species Formation in Genetic Function Optimization. In Schaffer, J. D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, 42–50.
Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Chichester: John Wiley & Sons, Ltd.
Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2): 182–197.
Encyclopaedia Britannica (2000). The Encyclopedia Britannica (http://www.britannica.com).
Fonseca, C. M. (1995). Multiobjective Genetic Algorithms with Application to Control Engineering Problems. Ph.D. Thesis, Dept. Automatic Control and Systems Eng., University of Sheffield, Sheffield, UK.
Fonseca, C. M.& Fleming, P. J. (1995). Multi-Objective Genetic Algorithm ade Easy: Selection, Sharing and Mating Restriction. International Conference on Genetic Algorithm in Engineering Systems: Innovations and Application, 12–14. UK.
Fonseca, C. M. & Fleming, P. J. (1998). Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms – Part I: A Unified Formulation. IEEE Transactions on System, Man, and Cybernetics-Part A: System and Humans 28(1): 26–37.
Garrison, W. G., Hu, X. S. & D'Ambrosio, J. G. (1997). Fitness Functions for Multi-Objective Optimization Problems: Combining Preferences with Pareto Rankings. In Belew, R. K. & Vose, M. D. (eds.) Foundations of Genetic Algorithms 4, 437–455. San Mateo, California: Morgan Kaufmann.
Goldberg, D. E. & Segrest, P. (1987). Finite Markov Chain Analysis of Genetic Algorithms. Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms: 1–8.
Grimm, L. G. (1993). Statistical Application for Behavioral Sciences. New York: J. Wiley.
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.
Horn, J., Nafpliotis, N. & Goldberg, D. E. (1994). A Niched Pareto Genetic Algorithm for Multiobjective Optimization. Proceeding of First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence 1: 82–87.
Khor, E. F., Tan, K. C. & Lee, T. H. (2001). Tabu-Based Exploratory Evolutionary Algorithm for Effective Multi-Objective Optimization, Springer-Verlag Lecture Notes in Computer Science, no. 1993. The First International Conference on Evolutionary Multi-Criteria Optimization (EMO'01), 344–358. Zurich, Switzerland.
Kim, H., Hayashi, Y. & Nara, K. (1997). An Algorithm for Thermal Unit Maintenance Scheduling Through Combined Use of GA, SA and TS. IEEE Transactions on Power Systems 12(1): 329–335.
Knowles, J. D. & Corne, D. W., (2000). Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2): 149–172 (MIT Press Journals).
Laumanns, M., Rudolph, G. & Schwefel, H. P. (1998). A Spatial Predator-Prey Approach to Multi-Objective Optimization: A Preliminary Study. In Eiben, A. E., Schoenauer, M. & Schwefel, H. P. (eds.) Parallel Problem Solving From Nature – PPSN V, 241–249. Amsterdam, Holland: Springer-Verlag.
Mantawy, A. H., Abdel-Magid, Y. L. & Selim, S. Z. (1999). Integrating Genetic Algorithms, Tabu Search, and Simulated Annealing for the Unit Commitment Problem. IEEE Transactions on Power Systems 14(3): 829–836.
Richardson, J. T., Palmer, M. R., Liepins, G. & Hilliard, M. (1989). Some Guidelines for Genetic Algorithms with Penalty Functions. In Schaffer, J. D. (ed.) Proceedings of Third Int. Conf. on Genetic Algorithms, 191–197.
Schaffer, J. D. (1985). Multiple-Objective Optimization Using Genetic Algorithm. Proceedings of the First International Conference on Genetic Algorithms, 93–100.
Schaffer, J. D., Caruana, R. A., Eshelman, L. J. & Das, R. (1989). A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization. Proceedings of Third International Conference on Genetic Algorithms, 51–60.
Srinivas, N. & Deb, K. (1994). Multiobjective Optimization Using Non-Dominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3): 221–248 (MIT Press Journals).
Tan, K. C., Khor, E. F., Heng, C. M. & Lee, T. H. (2001a). Exploratory Multi-Objective Evolutionary Algorithm: Performance Study and Comparisons. 2001 Genetic and Evolutionary Computation Conference, 647–654. California, USA.
Tan, K. C., Lee, T. H., Khoo, D. & Khor, E. F. (2001b). A Multi-Objective Evolutionary Algorithm Toolbox for Computer-Aided Multi-Objective Optimization. IEEE Transactions on Systems, Man and Cybernetics: Part B (Cybernetics) 31(4): 537–556.
Tan, K. C., Lee, T. H. & Khor, E. F. (2001c). Evolutionary Algorithm with Dynamic Population Size and Local Exploration for Multiobjective Optimization. IEEE Transactions on Evolutionary Computation 5(6): 565–588.
Tan, K. C., Lee, T. H. & Khor, E. F. (2002). Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons. Artificial Intelligence Review 17(4): 251–290.
The Math Works, Inc. (1998). Using MATLAB. The Math Works Inc., Version 5.
Veldhuizen, D. A. V. & Lamont, G. B. (1998). Evolutionary Computation and Convergence to a Pareto Front. In Koza, J. R. (ed.) Late Breaking Paper at the Genetic Programming 1998 Conference, 221–228. Stanford University, California: Stanford University Bookstore.
Veldhuizen, D. A. V. & Lamont G. B. (1999). Multiobjective Evolutionary Algorithm Test Suites. Symposium on Applied Computing, 351–357. San Antonio, Texas.
Yagiura, M. & Ibaraki, T. (1996). Metaheuristics as Robust and Simple Optimization Tools. IEEE Proceedings of the Congress on Evolutionary Computation, 541–546.
Zitzler, E. & Thiele, L. (1999). Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4): 257–271.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tan, K., Khor, E., Lee, T. et al. A Tabu-Based Exploratory Evolutionary Algorithm for Multiobjective Optimization. Artificial Intelligence Review 19, 231–260 (2003). https://doi.org/10.1023/A:1022863019997
Issue Date:
DOI: https://doi.org/10.1023/A:1022863019997