Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima

Abstract

The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of other thermophilic Eubacteria and Archaea. Of the Eubacteria sequenced to date, T.maritima has the highest percentage (24%) of genes that are most similar to archaeal genes. Eighty-one archaeal-like genes are clustered in 15 regions of the T. maritima genome that range in size from 4 to 20 kilobases. Conservation of gene order between T. maritima and Archaea in many of the clustered regions suggests that lateral gene transfer may have occurred between thermophilic Eubacteria and Archaea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circular representation of the T.maritima MSB8 genome showing predicted-coding regions and other features.
Figure 3: Overview of metabolism and transport in T.maritima MSB8.
Figure 4: Phylogenetic pattern of the periplasmic SBP component of the oligopeptide transporters and other transporters present on the .T. maritima MSB8 genome.
Figure 5: Linear representation of the location of nine oligopeptide transporter operons on the T.maritima MSB8 genome.
Figure 2: Linear representation of the T.maritima MSB8 genome.

Similar content being viewed by others

References

  1. Huber, R.et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch. Microbiol. 144, 324–333 ( 1986).

    Article  CAS  Google Scholar 

  2. Huber, R. & Stetter, K. O. in The Prokaryotes (eds Balows, A. et al.) 3809–3815 (Springer, Berlin, Heidelberg, New York, (1992).

    Book  Google Scholar 

  3. Achenbach-Richter, L., Gupta, R., Stetter, K. O. & Woese, C. R. Were the original eubacteria thermophiles? Syst. Appl. Microbiol. 9, 34–39 (1987 ).

    Article  CAS  Google Scholar 

  4. Fleischmann, R. D.et al. Whole-genome random sequence of Haemophilus influenzae Rd. Science 269, 496– 512 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Klenk, H.-P.et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Lobry, J. R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13, 660–665 (1996).

    Article  CAS  Google Scholar 

  7. Salzberg, S., Salzberg, A., Kerlavage, A. & Tomb, J.-F. Skewed oligomers and origins of replication. Gene 217 , 57–67 (1998).

    Article  CAS  Google Scholar 

  8. Bult, C. J.et al. Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273, 1058– 1073 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Salzberg, S. L., Delcher, A. L., Kasif, S. & White, O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 15, 544–548 (1998).

    Article  Google Scholar 

  10. Riley, M. Functions of gene products of Escherichia coli. Microbiol. Rev. 57, 862–952 ( 1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Deckert, G.et al. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353– 358 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Saier, M. H. J Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol. Rev. 58, 71–93 ( 1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawarabayasi, Y.et al . Complete sequence and gene organization of the genome of a hyperthermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5, 55–76 ( 1998).

    Article  CAS  Google Scholar 

  14. Boos, W. & Lucht, J. M. in Escherichia coli and Salmonella Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) 1175–1209 (ASM, Washington, (1996).

    Google Scholar 

  15. Bronnenmeier, K., Kern, A., Liebl, W. & Staudenbauer, W. L. Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl. Environ. Microbiol. 61, 1399– 1407 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Felix, C. R. & Ljungdahl, L. O. The cellulosome; the exocellular organelle of Clostridium. Annu. Rev. Microbiol. 47, 791–819 (1993).

    Article  CAS  Google Scholar 

  17. Vargas, M., Kashefi, K., Blunt-Harris, E. L. & Lovley, D. R. Microbiological evidence for Fe(III) reduction on early Earth. Nature 395, 65–67 ( 1998).

    Article  ADS  CAS  Google Scholar 

  18. Janssen, P. H. & Morgan, H. W. Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1. FEMS Microbiol. Lett. 75, 213–217 (1992).

    Article  CAS  Google Scholar 

  19. Gluch, M. F., Typke, D. & Baumeister, W. Motility and thermotactic responses of Thermotoga maritima. J. Bacteriol. 177, 5473– 5479 (1995).

    Article  CAS  Google Scholar 

  20. Lee, P. J. & Stock, A. M. Characterization of the genes and proteins of a two-component system from the hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol. 178, 5579–5585 (1996).

    Article  CAS  Google Scholar 

  21. Macnab, R. M. in Escherichia coli and Salmonella Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) 123–145 (ASM, Washington, (1996).

    Google Scholar 

  22. Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379– 433 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dubnau, D. Binding and transport of transforming DNA by Bacillus subtilis : the role of type IV pilin-like proteins—a review. Gene 11, 191–198 (1997).

    Article  Google Scholar 

  24. Gruber, T. M. & Bryant, D. A. Molecular systematic studies of eubacteria, using sigma70-type sigma factors of group 1 and group 2. J. Bacteriol. 179, 1734–1747 (1997).

    Article  CAS  Google Scholar 

  25. Zhang, J., Hardham, J., Barbour, A. & Norris, S. Antigenic variation in Lyme disease Borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89, 275– 285 (1997).

    Article  CAS  Google Scholar 

  26. Tomb, J.-F.et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Science 388, 539– 547 (1997).

    CAS  Google Scholar 

  27. Curnow, A. W., Ibba, M. & Soll, D. tRNA-dependent asparagine formation. Nature 382, 589–590 (1996).

    Article  CAS  Google Scholar 

  28. Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Eisen, J. A. The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J. Mol. Evol. 41, 1105–1123 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Smith, D. R.et al. Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: Functional analysis and comparative genomics. J. Bacteriol. 179, 7135–7155 (1997).

    Article  CAS  Google Scholar 

  31. Kunst, F.et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249– 256 (1997).

    Article  ADS  CAS  Google Scholar 

  32. Fraser, C. M.et al. Genomic sequence of a Lyme disease spirochete, Borrelia burgdorferi . Nature 390, 580–586 (1997).

    Article  ADS  CAS  Google Scholar 

  33. Blattner, F. R.et al . The complete genome sequence of Escherichia coli K-12. Science 277, 1453– 1462 (1997).

    Article  CAS  Google Scholar 

  34. Cole, S. T.et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 11, 537–544 (1998).

    Article  ADS  Google Scholar 

  35. Fraser, C. M.et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    Article  ADS  CAS  Google Scholar 

  36. Himmelreich, R.et al . Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420–4449 (1996).

    Article  CAS  Google Scholar 

  37. Kaneko, T.et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. (suppl.) 3, 185–209 (1996).

    Article  CAS  Google Scholar 

  38. Fraser, C. M.et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375– 388 (1998).

    Article  ADS  CAS  Google Scholar 

  39. Goffeau, A.et al. Life with 6000 genes. Science 274, 563–567 (1996).

    Article  Google Scholar 

  40. Huang, Y.-P. & Ito, J. The hyperthermophilic bacterium Thermotoga maritima has two different classes of family C DNA polymerases: evolutionary implications. Nucleic Acids Res. 26, 5300–5309 (1998).

    Article  CAS  Google Scholar 

  41. Lawrence, J. G. & Ochman, H. Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44, 383–397 ( 1997).

    Article  ADS  CAS  Google Scholar 

  42. Sutton, G. G., White, O., Adams, M. D. & Kerlavage, A. R. TIGR Assembler: A new tool for assembling large shotgun sequencing projects. Genome Seq. Technol. 1, 9–19 ( 1995).

    Article  CAS  Google Scholar 

  43. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  44. Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  45. Claros, M. G. & von Heijne, G. TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10, 685–686 ( 1994).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Biological and Environmental Research. We thank M. Heaney, J. Scott, D. Maas and B. Vincent for software and database support; R. Roberts, F. Kunst, and M. Simon for useful discussions; and R. Huber for providing T.maritima MSB8 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire M. Fraser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, K., Clayton, R., Gill, S. et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999). https://doi.org/10.1038/20601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing