Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synchronization and rhythmic processes in physiology

Abstract

Complex bodily rhythms are ubiquitous in living organisms. These rhythms arise from stochastic, nonlinear biological mechanisms interacting with a fluctuating environment. Disease often leads to alterations from normal to pathological rhythm. Fundamental questions concerning the dynamics of these rhythmic processes abound. For example, what is the origin of physiological rhythms? How do the rhythms interact with each other and the external environment? Can we decode the fluctuations in physiological rhythms to better diagnose human disease? And can we develop better methods to control pathological rhythms? Mathematical and physical techniques combined with physiological and medical studies are addressing these questions and are transforming our understanding of the rhythms of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative physiological time series.
Figure 2: Schematic diagram showing dynamics in ionic channels that deactivate by a Poisson process (based on an analysis of dynamics observed in acetylcholine channels13).
Figure 3: Integrate and fire model and locking zones.
Figure 4: Poincaré oscillator model and locking zones.
Figure 5: Schematic representation of a noisy, leaky integrate and fire model with three levels of noise.

Similar content being viewed by others

References

  1. Winfree, A. T. The Geometry of Biological Time (Springer, New York, 1980; 2nd edn 2001).

    MATH  Google Scholar 

  2. Glass L. & Mackey, M. C. From Clocks to Chaos: The Rhythms of Life (Princeton Univ. Press, Princeton, 1988).

    MATH  Google Scholar 

  3. Bassingthwaighte, J. B., Liebovitch, L. S. & West, B. J. Fractal Physiology (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  4. Keener, J. & Sneyd, J. Mathematical Physiology (Springer, New York, 1998).

    MATH  Google Scholar 

  5. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    CAS  Google Scholar 

  6. Aihara, K. & Matsumoto, G. in Chaos in Biological Systems (eds Degn, H., Holden, A. V. & Olson, L. F.) 121–131 (Plenum, New York, 1987).

    Google Scholar 

  7. Takahashi, N., Hanyu, Y. Musha, T., Kubo, R. & Matsumoto, G. Global bifurcation structure in periodically stimulated giant axons of squid. Physica D 43, 318–334 (1990).

    ADS  MATH  Google Scholar 

  8. Kaplan, D. T. et al. Subthreshold dynamics in periodically stimulated squid giant axons. Phys. Rev. Lett. 76, 4074–4077 (1996).

    ADS  CAS  PubMed  Google Scholar 

  9. Ruelle, D. Where can one hope to profitably apply the ideas of chaos? Phys. Today 47, 29–30 (July 1994).

    Google Scholar 

  10. Guevara, M. R., Glass, L. & Shrier, A. Phase-locking, period-doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells. Science 214, 1350–1353 (1981).

    ADS  CAS  PubMed  Google Scholar 

  11. DeFelice, L. J. & Clay, J. R. in Single-Channel Recording Ch. 15 (eds Sakmann, B. & Neher, E.) 323–342 (Plenum, New York, 1983).

    Google Scholar 

  12. DeFelice, L. J. & Isaac, A. Chaotic states in a random world: relationships between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J. Stat. Phys. 70, 339–354 (1993).

    ADS  MATH  Google Scholar 

  13. Colquhoun, D. & Hawkes, A. G. in Single-Channel Recording Ch. 20 (eds Sakmann, B. & Neher, E.) 397–482 (Plenum, New York, 1995).

    Google Scholar 

  14. Wilders, R. & Jongsma, H. J. Beating irregularity of single pacemaker cells isolated from the rabbit sinoatrial node. Biophys. J. 60, 2601–2613 (1993).

    Google Scholar 

  15. Guevara, M. R. & Lewis, T. A minimal single channel model for the regularity of beating of the sinoatrial node. Chaos 5, 174–183 (1995).

    ADS  PubMed  Google Scholar 

  16. Rabinovich, M. I. & Abarbanel, H. D. I. The role of chaos in neural systems. Neuroscience 87, 5–14 (1998).

    CAS  PubMed  Google Scholar 

  17. De Vries, G, Sherman, A. & Zhu, H. R. Diffusively coupled bursters: effects of cell heterogeneity. B. Math. Biol. 60, 1167–1200 (1998).

    CAS  MATH  Google Scholar 

  18. Camm, A. J. et al. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996).

    Google Scholar 

  19. Poon, C.-S. & Merrill, C. K. Decrease of cardiac chaos in congestive heart failure. Nature 389, 492–495 (1998).

    ADS  Google Scholar 

  20. Kanters J. K., Holstein-Rathlou N.-H. & Agner, E. Lack of evidence for low-dimensional chaos in heart rate variability. J. Cardiovasc. Electrophysiol. 5, 591–601 (1994).

    CAS  PubMed  Google Scholar 

  21. Costa, M. et al. No evidence of chaos in the heart rate variability of normal and cardiac transplant human subjects. J. Cardiovasc. Electrophysiol. 10, 1350–1357 (1999).

    CAS  PubMed  Google Scholar 

  22. Kobayashi, M. & Musha, T. 1/f fluctuation of heartbeat period. IEEE Trans. Biomed. Eng. 29, 456–457 (1982).

    CAS  PubMed  Google Scholar 

  23. Peng, C. K. et al. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70, 1343–1346 (1993).

    ADS  Google Scholar 

  24. Turcott, R. G. & Teich, M. Fractal character of the electrocardiogram: distinguishing heart failure and normal patients. Ann. Biomed. Eng. 24, 269–293 (1996).

    CAS  PubMed  Google Scholar 

  25. Ivanov, P.C. et al. Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999).

    ADS  CAS  PubMed  Google Scholar 

  26. Bak, P. How Nature Works: The Science of Self-Organized Criticality (Copernicus, New York, 1996).

    MATH  Google Scholar 

  27. Roach, D., Sheldon, A., Wilson, W. & Sheldon, R. Temporally localized contributions to measures of large-scale heart rate variability. Am. J. Physiol. 274(Heart Circ. Physiol. H43), H1465–H1471 (1998).

    CAS  PubMed  Google Scholar 

  28. Kiloh, L. et al. Clinical Electroencephalography (Butterworths, London, 1981).

    Google Scholar 

  29. Babloyantz, A. & Destexhe, A. Low-dimensional chaos in an instance of epilepsy. Proc. Natl Acad. Sci. USA 83, 3513–3517 (1986).

    ADS  CAS  PubMed  Google Scholar 

  30. Jansen, B. H. & Brandt, M. E. (eds) Nonlinear Dynamical Analysis of the EEG (World Scientific, Singapore, 1993).

    Google Scholar 

  31. Haurie, C., Dale, D. C. & Mackey, M. C. Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood 92, 2629–2640 (1998).

    CAS  PubMed  Google Scholar 

  32. Prank, K. et al. Nonlinear dynamics in pulsatile secretion of parathyroid hormone in human subjects. Chaos 5, 76–81 (1995).

    ADS  CAS  PubMed  Google Scholar 

  33. Prank, K. et al. Self-organized segmentation of time series: separating growth hormone secretion in acromegaly from normal controls. Biophys. J. 70, 2540–2547 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Veldman R. G. et al. Increased episodic release and disorderliness of prolactin secretion in both micro- and macroprolactinomas. Eur. J. Endocrinol. 140, 192–200 (1999).

    CAS  Google Scholar 

  35. Golubitsky, M., Stewart, I., Buono, P. L. & Collins, J. J. Symmetry in locomotor central pattern generators and animal gaits. Nature 401, 693–695 (1999).

    ADS  CAS  PubMed  Google Scholar 

  36. Strogatz, S. H. The Mathematical Structure of the Human Sleep-Wake Cycle. Lecture Notes in Biomathematics Vol. 69 (Springer, Berlin, 1986).

    MATH  Google Scholar 

  37. Daan, S., Beersma, D. G. M. & Borbely, A. A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 246, R161–R178 (1984).

    CAS  PubMed  Google Scholar 

  38. Jewett, M. E. & Kronauer, R. E. Refinement of a limit cycle oscillator model of the effects of light on the human circadian pacemaker. J. Theor. Biol. 192, 455–465 (1998).

    CAS  PubMed  Google Scholar 

  39. Leloup, J. C. & Goldbeter, A. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythms 13, 70–87 (1998).

    CAS  PubMed  Google Scholar 

  40. Petrillo, G. A. & Glass, L. A theory for phase-locking of respiration in cats to a mechanical ventilator. Am. J. Physiol. 246(Regulat. Integrat. Comp. Physiol. 15), R311–R320 (1984).

    CAS  PubMed  Google Scholar 

  41. Graves, C., Glass, L., Laporta, D., Meloche, R. & Grassino, A. Respiratory phase-locking during mechanical ventilation in anesthetized human subjects. Am. J. Physiol. 250 (Regulat. Integrat. Comp. Physiol. 19), R902–R909 (1986).

    CAS  PubMed  Google Scholar 

  42. Simoin, P. M., Habel, A. M., Daubenspeck, J. A. & Leiter, J. C. Vagal feedback in the entrainment of respiration to mechanical ventilation in sleeping humans. J. Appl. Physiol. 89, 760–769 (2000).

    Google Scholar 

  43. Schäfer, C., Rosenblum, M. G., Kurths, J. & Abel, H.-H. Heartbeat synchronized with ventilation. Nature 392, 239–240 (1998).

    ADS  PubMed  Google Scholar 

  44. Murthy, V. N. & Fetz, E. E. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl Acad. Sci. USA 89, 5670–5674 (1992).

    ADS  CAS  Google Scholar 

  45. Gray, C. M., König, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989).

    ADS  CAS  Google Scholar 

  46. Butera, R. J., Rinzel, J. & Smith, J. C. Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations of coupled pacemaker neurons. J. Neurophysiol. 82, 398–415 (1999).

    PubMed  Google Scholar 

  47. Kopell, N., Ermentrout, G. B., Whittington, M. A. & Traub, R. D. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl Acad. Sci. USA 97, 1867–1872 (2000).

    ADS  CAS  Google Scholar 

  48. Achermann, P. & Kunz, H. Modeling circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators: phase shifts and phase response curves. J. Biol. Rhythms 14, 460–468 (1999).

    CAS  PubMed  Google Scholar 

  49. Mirollo, R. E. & Strogatz, S. H. Synchronization properties of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645–1662 (1990).

    MathSciNet  MATH  Google Scholar 

  50. Shinbrot, T. Progress in the control of chaos. Adv. Phys. 95, 73–111 (1995).

    ADS  Google Scholar 

  51. Christini, D. J., Hall, K., Collins, J. J. & Glass, L. in Handbook of Biological Physics Vol. 4: Neuro-informatics, Neural Modelling (eds Moss, F. & Gielen, S.) 205–227 (Elsevier,Amsterdam, 2000).

    Google Scholar 

  52. Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N. Experimental control of cardiac chaos. Science 257, 1230–1235 (1992).

    ADS  CAS  PubMed  Google Scholar 

  53. Schiff, S. J. et al. Controlling chaos in the brain. Nature 370, 615–620 (1994).

    ADS  CAS  PubMed  Google Scholar 

  54. Skarda, C.A. & Freeman, W. J. How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10, 161–195 (1987).

    Google Scholar 

  55. Gammaitoni, L., Hänggi, P., Jung, P. & Marchsoni, F. Stochastic resonance. Rev. Mod. Phys. 70, 223–288 (1998).

    ADS  CAS  Google Scholar 

  56. Longtin, A., Bulsara, A. & Moss, F. Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys. Rev. Lett. 67, 656–659 (1991).

    ADS  CAS  PubMed  Google Scholar 

  57. Longtin, A. Mechanisms of stochastic phase locking. Chaos 5, 209–215 (1995).

    ADS  PubMed  Google Scholar 

  58. Douglass, J. K., Wilkens, L., Pantazelou, E. & Moss, F. Stochastic resonance: noise-enhanced information transfer in crayfish mechanoreceptors. Nature 365, 337 (1993).

    ADS  CAS  PubMed  Google Scholar 

  59. Keener, J. P., Hoppensteadt, F. C. & Rinzel, J. Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM J. Appl. Math. 41, 503–517 (1981).

    MathSciNet  MATH  Google Scholar 

  60. Collins, J. J., Imhoff, T. T. & Grigg, P. Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J. Neurophysiol. 76, 642–645 (1996).

    CAS  PubMed  Google Scholar 

  61. Greenwood, P. E., Ward, L. M., Russell, D. F., Neiman, A. & Moss, F. Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture. Phys. Rev. Lett. 84, 4773–4776 (2000).

    ADS  CAS  PubMed  Google Scholar 

  62. Collins, J. J., Imhoff, T. T. & Grigg, P. Noise-mediated enhancements and decrements in human tactile sensation. Phys. Rev. E 56, 923–926 (1997).

    ADS  CAS  Google Scholar 

  63. Simonotto, E. et al. Visual perception of stochastic resonance. Phys. Rev. Lett. 78, 1186–1189 (1997).

    ADS  CAS  Google Scholar 

  64. Richardson, K. A., Imhoff, T. T., Grigg, P. & Collins, J. J. Using electrical noise to enhance the ability of humans to detect subthreshold mechanical stimuli. Chaos 8, 599–603 (1998).

    ADS  PubMed  MATH  Google Scholar 

  65. Mackey, M. C. & Glass, L. Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977).

    ADS  CAS  PubMed  MATH  Google Scholar 

  66. Pool, R. Is it healthy to be chaotic? Science 243, 604–607 (1989).

    ADS  CAS  PubMed  Google Scholar 

  67. Skinner, J. E., Pratt, C. M. & Vybiral, T. A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J. 125, 731–743 (1993).

    CAS  PubMed  Google Scholar 

  68. Rosenbaum, D. S. et al. Electrical alternans and vulnerability to ventricular arrhythmias. N. Engl. J. Med. 330, 235–241 (1994).

    CAS  PubMed  Google Scholar 

  69. Huikuri, H. V. et al. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101, 47–53 (2000).

    CAS  PubMed  Google Scholar 

  70. Klingenheben, T. et al. Predictive value of T-wave alternans for arrhythmic events in patients with congestive heart failure. Lancet 356, 651–652 (2000).

    CAS  PubMed  Google Scholar 

  71. Lipsitz, L. A. Age-related changes in the “complexity” of cardiovascular dynamics: a potential marker of vulnerability to disease. Chaos 5, 102–109 (1995).

    ADS  PubMed  Google Scholar 

  72. Goldberger, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, e215–e220 (2000). [Circulation Electronic Pages 〈http://circ.ahajournals.org/cgi/content/abstract/101/23/e215〉 (13 June 2000); see also 〈http://www.physionet.org〉.]

    CAS  PubMed  Google Scholar 

  73. Hegger, R., Kantz, H. & Schreiber, T. Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9, 413–435 (1999); 〈http://www.mpipks-dresden.mpg.de/~tisean/〉.

    ADS  PubMed  MATH  Google Scholar 

  74. Schiff, S. J. Forecasting brain storms. Nature Med. 4, 1117–1118 (1998).

    CAS  PubMed  Google Scholar 

  75. Lehnertz, K. & Elger, C. E. Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain activity. Phys. Rev. Lett. 80, 5019–5022 (1998).

    ADS  CAS  Google Scholar 

  76. Martinerie, J. et al. Epileptic seizures can be anticipated by non-linear analysis. Nature Med. 4, 1173–1176 (1998).

    CAS  PubMed  Google Scholar 

  77. Beuter, A. & Edwards, R. Tremor in Cree subjects exposed to methylmercury: a preliminary study. Neurotoxicol. Teratol. 20, 581–589 (1998).

    CAS  PubMed  Google Scholar 

  78. Gerr, F., Letz, R. & Green, R. C. Relationships between quantitative measures and neurologist's clinical rating of tremor and standing steadiness in two epidemiological studies. NeuroToxicology 21, 753–760 (2000).

    CAS  PubMed  Google Scholar 

  79. Edwards, R. & Beuter, A. Using time domain characteristics to discriminate physiologic and parkinsonian tremors. J. Clin. Neurophysiol. 17, 87–100 (2000).

    CAS  PubMed  Google Scholar 

  80. Mormont, M. C. & Lévi, F. Circadian-system alterations during cancer processes: a review. Int. J. Cancer 70, 241–247 (1997).

    CAS  PubMed  Google Scholar 

  81. Daan, S. & Lewy, A. J. Scheduled exposure to daylight: a potential strategy to reduce jet lag following transmeridian flight. Psychopharmacol. Bull. 20, 566–588 (1984).

    CAS  PubMed  Google Scholar 

  82. Ditto, W. L. et al. Control of human atrial fibrillation. Int. J. Bif. Chaos 10, 593–601 (2000).

    Google Scholar 

  83. Suki, B. et al. Life-support systems benefits from noise. Nature 393, 127–128 (1998).

    ADS  CAS  PubMed  Google Scholar 

  84. Paydarfar, D. & Buerkel, D. M. Sporadic apnea: paradoxical transformation to eupnea by perturbations that inhibit inspiration. Med. Hypotheses 49, 19–26 (1997).

    CAS  PubMed  Google Scholar 

  85. Lipsitz L. A. et al. Heart rate and respiratory dynamics on ascent to high altitude. Br. Heart J. 74, 390–396 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hausdorff, J. M. et al. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease. J. Appl. Physiol. 82, 262–269 (1997).

    CAS  PubMed  Google Scholar 

  87. Hausdorff, J. M. et al. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J. Appl. Physiol. 88, 2045–2053 (2000).

    CAS  PubMed  Google Scholar 

  88. Glass, L. Cardiac arrhythmias and circle maps—a classical problem. Chaos 1, 13–19 (1991).

    ADS  MathSciNet  PubMed  MATH  Google Scholar 

  89. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 1990).

    MATH  Google Scholar 

  90. Glass, L. & Mackey, M. C. A simple model for phase locking of biological oscillators. J. Math. Biol. 7, 339–352 (1979).

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  91. Perez, R. & Glass, L. Bistability, period doubling bifurcations and chaos in a periodically forced oscillator. Phys. Lett. 90A, 441–443 (1982).

    ADS  MathSciNet  Google Scholar 

  92. Guevara, M. R. & Glass, L. Phase-locking, period-doubling bifurcations and chaos in a mathematical model of a periodically driven biological oscillator: a theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J. Math. Biol. 14, 1–23 (1982).

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

Download references

Acknowledgements

Thanks to M. R. Guevara, A. L. Goldberger, J. J. Collins, J. Milton and E. Cooper for helpful conversations; J. Lacuna, Y. Nagai and T. Inoue for assistance with the figures; and J. Gallas (Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil) for providing the colour representations of the locking zones in Figs 3c and 4c. My research has been supported by NSERC, MRC, MITACS, Canadian Heart and Stroke Foundation, FCAR and the Research Resource for Complex Physiologic Signals (NIH).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glass, L. Synchronization and rhythmic processes in physiology. Nature 410, 277–284 (2001). https://doi.org/10.1038/35065745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065745

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing