Abstract
Complex bodily rhythms are ubiquitous in living organisms. These rhythms arise from stochastic, nonlinear biological mechanisms interacting with a fluctuating environment. Disease often leads to alterations from normal to pathological rhythm. Fundamental questions concerning the dynamics of these rhythmic processes abound. For example, what is the origin of physiological rhythms? How do the rhythms interact with each other and the external environment? Can we decode the fluctuations in physiological rhythms to better diagnose human disease? And can we develop better methods to control pathological rhythms? Mathematical and physical techniques combined with physiological and medical studies are addressing these questions and are transforming our understanding of the rhythms of life.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Winfree, A. T. The Geometry of Biological Time (Springer, New York, 1980; 2nd edn 2001).
Glass L. & Mackey, M. C. From Clocks to Chaos: The Rhythms of Life (Princeton Univ. Press, Princeton, 1988).
Bassingthwaighte, J. B., Liebovitch, L. S. & West, B. J. Fractal Physiology (Oxford Univ. Press, New York, 1994).
Keener, J. & Sneyd, J. Mathematical Physiology (Springer, New York, 1998).
Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500â544 (1952).
Aihara, K. & Matsumoto, G. in Chaos in Biological Systems (eds Degn, H., Holden, A. V. & Olson, L. F.) 121â131 (Plenum, New York, 1987).
Takahashi, N., Hanyu, Y. Musha, T., Kubo, R. & Matsumoto, G. Global bifurcation structure in periodically stimulated giant axons of squid. Physica D 43, 318â334 (1990).
Kaplan, D. T. et al. Subthreshold dynamics in periodically stimulated squid giant axons. Phys. Rev. Lett. 76, 4074â4077 (1996).
Ruelle, D. Where can one hope to profitably apply the ideas of chaos? Phys. Today 47, 29â30 (July 1994).
Guevara, M. R., Glass, L. & Shrier, A. Phase-locking, period-doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells. Science 214, 1350â1353 (1981).
DeFelice, L. J. & Clay, J. R. in Single-Channel Recording Ch. 15 (eds Sakmann, B. & Neher, E.) 323â342 (Plenum, New York, 1983).
DeFelice, L. J. & Isaac, A. Chaotic states in a random world: relationships between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J. Stat. Phys. 70, 339â354 (1993).
Colquhoun, D. & Hawkes, A. G. in Single-Channel Recording Ch. 20 (eds Sakmann, B. & Neher, E.) 397â482 (Plenum, New York, 1995).
Wilders, R. & Jongsma, H. J. Beating irregularity of single pacemaker cells isolated from the rabbit sinoatrial node. Biophys. J. 60, 2601â2613 (1993).
Guevara, M. R. & Lewis, T. A minimal single channel model for the regularity of beating of the sinoatrial node. Chaos 5, 174â183 (1995).
Rabinovich, M. I. & Abarbanel, H. D. I. The role of chaos in neural systems. Neuroscience 87, 5â14 (1998).
De Vries, G, Sherman, A. & Zhu, H. R. Diffusively coupled bursters: effects of cell heterogeneity. B. Math. Biol. 60, 1167â1200 (1998).
Camm, A. J. et al. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043â1065 (1996).
Poon, C.-S. & Merrill, C. K. Decrease of cardiac chaos in congestive heart failure. Nature 389, 492â495 (1998).
Kanters J. K., Holstein-Rathlou N.-H. & Agner, E. Lack of evidence for low-dimensional chaos in heart rate variability. J. Cardiovasc. Electrophysiol. 5, 591â601 (1994).
Costa, M. et al. No evidence of chaos in the heart rate variability of normal and cardiac transplant human subjects. J. Cardiovasc. Electrophysiol. 10, 1350â1357 (1999).
Kobayashi, M. & Musha, T. 1/f fluctuation of heartbeat period. IEEE Trans. Biomed. Eng. 29, 456â457 (1982).
Peng, C. K. et al. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70, 1343â1346 (1993).
Turcott, R. G. & Teich, M. Fractal character of the electrocardiogram: distinguishing heart failure and normal patients. Ann. Biomed. Eng. 24, 269â293 (1996).
Ivanov, P.C. et al. Multifractality in human heartbeat dynamics. Nature 399, 461â465 (1999).
Bak, P. How Nature Works: The Science of Self-Organized Criticality (Copernicus, New York, 1996).
Roach, D., Sheldon, A., Wilson, W. & Sheldon, R. Temporally localized contributions to measures of large-scale heart rate variability. Am. J. Physiol. 274(Heart Circ. Physiol. H43), H1465âH1471 (1998).
Kiloh, L. et al. Clinical Electroencephalography (Butterworths, London, 1981).
Babloyantz, A. & Destexhe, A. Low-dimensional chaos in an instance of epilepsy. Proc. Natl Acad. Sci. USA 83, 3513â3517 (1986).
Jansen, B. H. & Brandt, M. E. (eds) Nonlinear Dynamical Analysis of the EEG (World Scientific, Singapore, 1993).
Haurie, C., Dale, D. C. & Mackey, M. C. Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood 92, 2629â2640 (1998).
Prank, K. et al. Nonlinear dynamics in pulsatile secretion of parathyroid hormone in human subjects. Chaos 5, 76â81 (1995).
Prank, K. et al. Self-organized segmentation of time series: separating growth hormone secretion in acromegaly from normal controls. Biophys. J. 70, 2540â2547 (1996).
Veldman R. G. et al. Increased episodic release and disorderliness of prolactin secretion in both micro- and macroprolactinomas. Eur. J. Endocrinol. 140, 192â200 (1999).
Golubitsky, M., Stewart, I., Buono, P. L. & Collins, J. J. Symmetry in locomotor central pattern generators and animal gaits. Nature 401, 693â695 (1999).
Strogatz, S. H. The Mathematical Structure of the Human Sleep-Wake Cycle. Lecture Notes in Biomathematics Vol. 69 (Springer, Berlin, 1986).
Daan, S., Beersma, D. G. M. & Borbely, A. A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 246, R161âR178 (1984).
Jewett, M. E. & Kronauer, R. E. Refinement of a limit cycle oscillator model of the effects of light on the human circadian pacemaker. J. Theor. Biol. 192, 455â465 (1998).
Leloup, J. C. & Goldbeter, A. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythms 13, 70â87 (1998).
Petrillo, G. A. & Glass, L. A theory for phase-locking of respiration in cats to a mechanical ventilator. Am. J. Physiol. 246(Regulat. Integrat. Comp. Physiol. 15), R311âR320 (1984).
Graves, C., Glass, L., Laporta, D., Meloche, R. & Grassino, A. Respiratory phase-locking during mechanical ventilation in anesthetized human subjects. Am. J. Physiol. 250 (Regulat. Integrat. Comp. Physiol. 19), R902âR909 (1986).
Simoin, P. M., Habel, A. M., Daubenspeck, J. A. & Leiter, J. C. Vagal feedback in the entrainment of respiration to mechanical ventilation in sleeping humans. J. Appl. Physiol. 89, 760â769 (2000).
Schäfer, C., Rosenblum, M. G., Kurths, J. & Abel, H.-H. Heartbeat synchronized with ventilation. Nature 392, 239â240 (1998).
Murthy, V. N. & Fetz, E. E. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl Acad. Sci. USA 89, 5670â5674 (1992).
Gray, C. M., König, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334â337 (1989).
Butera, R. J., Rinzel, J. & Smith, J. C. Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations of coupled pacemaker neurons. J. Neurophysiol. 82, 398â415 (1999).
Kopell, N., Ermentrout, G. B., Whittington, M. A. & Traub, R. D. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl Acad. Sci. USA 97, 1867â1872 (2000).
Achermann, P. & Kunz, H. Modeling circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators: phase shifts and phase response curves. J. Biol. Rhythms 14, 460â468 (1999).
Mirollo, R. E. & Strogatz, S. H. Synchronization properties of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645â1662 (1990).
Shinbrot, T. Progress in the control of chaos. Adv. Phys. 95, 73â111 (1995).
Christini, D. J., Hall, K., Collins, J. J. & Glass, L. in Handbook of Biological Physics Vol. 4: Neuro-informatics, Neural Modelling (eds Moss, F. & Gielen, S.) 205â227 (Elsevier,Amsterdam, 2000).
Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N. Experimental control of cardiac chaos. Science 257, 1230â1235 (1992).
Schiff, S. J. et al. Controlling chaos in the brain. Nature 370, 615â620 (1994).
Skarda, C.A. & Freeman, W. J. How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10, 161â195 (1987).
Gammaitoni, L., Hänggi, P., Jung, P. & Marchsoni, F. Stochastic resonance. Rev. Mod. Phys. 70, 223â288 (1998).
Longtin, A., Bulsara, A. & Moss, F. Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys. Rev. Lett. 67, 656â659 (1991).
Longtin, A. Mechanisms of stochastic phase locking. Chaos 5, 209â215 (1995).
Douglass, J. K., Wilkens, L., Pantazelou, E. & Moss, F. Stochastic resonance: noise-enhanced information transfer in crayfish mechanoreceptors. Nature 365, 337 (1993).
Keener, J. P., Hoppensteadt, F. C. & Rinzel, J. Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM J. Appl. Math. 41, 503â517 (1981).
Collins, J. J., Imhoff, T. T. & Grigg, P. Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J. Neurophysiol. 76, 642â645 (1996).
Greenwood, P. E., Ward, L. M., Russell, D. F., Neiman, A. & Moss, F. Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture. Phys. Rev. Lett. 84, 4773â4776 (2000).
Collins, J. J., Imhoff, T. T. & Grigg, P. Noise-mediated enhancements and decrements in human tactile sensation. Phys. Rev. E 56, 923â926 (1997).
Simonotto, E. et al. Visual perception of stochastic resonance. Phys. Rev. Lett. 78, 1186â1189 (1997).
Richardson, K. A., Imhoff, T. T., Grigg, P. & Collins, J. J. Using electrical noise to enhance the ability of humans to detect subthreshold mechanical stimuli. Chaos 8, 599â603 (1998).
Mackey, M. C. & Glass, L. Oscillation and chaos in physiological control systems. Science 197, 287â289 (1977).
Pool, R. Is it healthy to be chaotic? Science 243, 604â607 (1989).
Skinner, J. E., Pratt, C. M. & Vybiral, T. A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J. 125, 731â743 (1993).
Rosenbaum, D. S. et al. Electrical alternans and vulnerability to ventricular arrhythmias. N. Engl. J. Med. 330, 235â241 (1994).
Huikuri, H. V. et al. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101, 47â53 (2000).
Klingenheben, T. et al. Predictive value of T-wave alternans for arrhythmic events in patients with congestive heart failure. Lancet 356, 651â652 (2000).
Lipsitz, L. A. Age-related changes in the âcomplexityâ of cardiovascular dynamics: a potential marker of vulnerability to disease. Chaos 5, 102â109 (1995).
Goldberger, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, e215âe220 (2000). [Circulation Electronic Pages ãhttp://circ.ahajournals.org/cgi/content/abstract/101/23/e215ã (13 June 2000); see also ãhttp://www.physionet.orgã.]
Hegger, R., Kantz, H. & Schreiber, T. Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9, 413â435 (1999); ãhttp://www.mpipks-dresden.mpg.de/~tisean/ã.
Schiff, S. J. Forecasting brain storms. Nature Med. 4, 1117â1118 (1998).
Lehnertz, K. & Elger, C. E. Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain activity. Phys. Rev. Lett. 80, 5019â5022 (1998).
Martinerie, J. et al. Epileptic seizures can be anticipated by non-linear analysis. Nature Med. 4, 1173â1176 (1998).
Beuter, A. & Edwards, R. Tremor in Cree subjects exposed to methylmercury: a preliminary study. Neurotoxicol. Teratol. 20, 581â589 (1998).
Gerr, F., Letz, R. & Green, R. C. Relationships between quantitative measures and neurologist's clinical rating of tremor and standing steadiness in two epidemiological studies. NeuroToxicology 21, 753â760 (2000).
Edwards, R. & Beuter, A. Using time domain characteristics to discriminate physiologic and parkinsonian tremors. J. Clin. Neurophysiol. 17, 87â100 (2000).
Mormont, M. C. & Lévi, F. Circadian-system alterations during cancer processes: a review. Int. J. Cancer 70, 241â247 (1997).
Daan, S. & Lewy, A. J. Scheduled exposure to daylight: a potential strategy to reduce jet lag following transmeridian flight. Psychopharmacol. Bull. 20, 566â588 (1984).
Ditto, W. L. et al. Control of human atrial fibrillation. Int. J. Bif. Chaos 10, 593â601 (2000).
Suki, B. et al. Life-support systems benefits from noise. Nature 393, 127â128 (1998).
Paydarfar, D. & Buerkel, D. M. Sporadic apnea: paradoxical transformation to eupnea by perturbations that inhibit inspiration. Med. Hypotheses 49, 19â26 (1997).
Lipsitz L. A. et al. Heart rate and respiratory dynamics on ascent to high altitude. Br. Heart J. 74, 390â396 (1995).
Hausdorff, J. M. et al. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease. J. Appl. Physiol. 82, 262â269 (1997).
Hausdorff, J. M. et al. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J. Appl. Physiol. 88, 2045â2053 (2000).
Glass, L. Cardiac arrhythmias and circle mapsâa classical problem. Chaos 1, 13â19 (1991).
Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 1990).
Glass, L. & Mackey, M. C. A simple model for phase locking of biological oscillators. J. Math. Biol. 7, 339â352 (1979).
Perez, R. & Glass, L. Bistability, period doubling bifurcations and chaos in a periodically forced oscillator. Phys. Lett. 90A, 441â443 (1982).
Guevara, M. R. & Glass, L. Phase-locking, period-doubling bifurcations and chaos in a mathematical model of a periodically driven biological oscillator: a theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J. Math. Biol. 14, 1â23 (1982).
Acknowledgements
Thanks to M. R. Guevara, A. L. Goldberger, J. J. Collins, J. Milton and E. Cooper for helpful conversations; J. Lacuna, Y. Nagai and T. Inoue for assistance with the figures; and J. Gallas (Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil) for providing the colour representations of the locking zones in Figs 3c and 4c. My research has been supported by NSERC, MRC, MITACS, Canadian Heart and Stroke Foundation, FCAR and the Research Resource for Complex Physiologic Signals (NIH).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Glass, L. Synchronization and rhythmic processes in physiology. Nature 410, 277â284 (2001). https://doi.org/10.1038/35065745
Issue Date:
DOI: https://doi.org/10.1038/35065745