Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Receptors and transduction in taste

Abstract

Taste is the sensory system devoted primarily to a quality check of food to be ingested. Although aided by smell and visual inspection, the final recognition and selection relies on chemoreceptive events in the mouth. Emotional states of acute pleasure or displeasure guide the selection and contribute much to our quality of life. Membrane proteins that serve as receptors for the transduction of taste have for a long time remained elusive. But screening the mass of genome sequence data that have recently become available has provided a new means to identify key receptors for bitter and sweet taste. Molecular biology has also identified receptors for salty, sour and umami taste.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of taste buds (rat).
Figure 2
Figure 3: Transduction of bitter taste as elicited by a variety of ligands.
Figure 4: Molecules involved in the transduction of sweet taste.

Similar content being viewed by others

References

  1. Ganchrow, J. R., Steiner, J. E. & Daher, M. Neonatal facial expressions in response to different qualities and intensities of gustatory stimuli. Infant Behav. Dev. 6, 189–200 (1983).

    Google Scholar 

  2. Pierce-Shimomura, J. T., Faumont, S., Gaston, M. R., Pearson, B. J. & Lockery, S. R. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature 410, 694-698 (2001).

  3. Clyne, P. J., Warr, C. G. & Carlson, J. R. Candidate taste receptors in Drosophila. Science 287, 1830–1834 (2000).

    ADS  CAS  PubMed  Google Scholar 

  4. Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001).

    CAS  PubMed  Google Scholar 

  5. Stone, L. M., Finger, T. E., Tam, P. P. & Tan, S. S. Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc. Natl Acad. Sci. USA 92, 1916–1920 (1995).

    ADS  CAS  PubMed  Google Scholar 

  6. McLaughlin, S. K., McKinnon, P. J. & Margolskee, R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563–569 (1992).

    ADS  CAS  PubMed  Google Scholar 

  7. Zancanaro, C., Caretta, C. M., Merigo, F., Cavaggioni, A. & Osculati, F. α-Gustducin expression in the vomeronasal organ of the mouse. Eur. J. Neurosci. 11, 4473–4475 (1999).

    CAS  PubMed  Google Scholar 

  8. Höfer, D., Püschel, B. & Drenckhahn, D. Taste receptor-like cells in the rat gut identified by expression of α-gustducin. Proc. Natl Acad. Sci. USA 93, 6631–6634 (1996).

    ADS  PubMed  Google Scholar 

  9. Hänig, D. P. Zur Psychophysik des Geschmackssinnes. Phil. Stud. 17, 576–623 (1901).

    Google Scholar 

  10. Lindemann, B. Receptor seeks ligand: on the way to cloning the molecular receptors for sweet and bitter taste. Nature Med. 5, 381–382 (1999).

    CAS  PubMed  Google Scholar 

  11. Smith, D. V. & Margolskee, R. F. Making sense of taste. Sci. Am. 284, 26–33 (2001).

    Google Scholar 

  12. Mistretta, C. M., Goosens, K. A., Farinas, I. & Reichardt, L. F. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. J. Comp. Neurol. 409, 13–24 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krimm, R. F., Miller, K. K., Kitzman, P. H., Davis, B. M. & Albers, K. M. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue. Dev. Biol. 232, 508–521 (2001).

    CAS  PubMed  Google Scholar 

  14. Lundy, R. F. Jr & Contreras, R. J. Gustatory neuron types in rat geniculate ganglion. J. Neurophysiol. 82, 2970–2988 (1999).

    CAS  PubMed  Google Scholar 

  15. Gilbertson, T. A., Boughter, J. D. Jr, Z. hang, H. & Smith, D. V. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J. Neurosci. 21, 4931–4941 (2001).

    CAS  PubMed  Google Scholar 

  16. Erickson, R. P. The evolution of neural coding ideas in the chemical senses. Physiol. Behav. 69, 3–13 (2000).

    CAS  PubMed  Google Scholar 

  17. Roper, S. D. Regenerative impulses in taste cells. Science 220, 1311–1312 (1983).

    ADS  CAS  PubMed  Google Scholar 

  18. Avenet, P. & Lindemann, B. Patch-clamp study of isolated taste receptor cells of the frog. J. Membr. Biol. 97, 223–240 (1987).

    CAS  PubMed  Google Scholar 

  19. Lindemann, B. Taste reception. Physiol. Rev. 76, 719–766 (1996).

    CAS  PubMed  Google Scholar 

  20. Akabas, M. H., Dodd, J. & Al-Awqati, Q. A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells. Science 242, 1047–1050 (1988).

    ADS  CAS  PubMed  Google Scholar 

  21. Bernhardt, S. J., Naim, M., Zehavi, U. & Lindemann, B. Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J. Physiol. 490, 325–336 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Caicedo, A. & Roper, S. D. Taste receptor cells that discriminate between bitter stimuli. Science 291, 1557–1560 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zviman, M. M., Restrepo, D. & Teeter, J. H. Single taste stimuli elicit either increases and decreases in intracellular calcium in isolated catfish taste cells. J. Membr. Biol. 149, 81–88 (1996).

    CAS  PubMed  Google Scholar 

  24. Hayashi, Y., Zviman, M. M., Brand, J. G., Teeter, J. H. & Restrepo, D. Measurement of membrane potential and [Ca2+]i in cell ensembles: application to the study of glutamate taste in mouse. Biophys. J. 71, 1057–1070 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herness, M. S. & Sun, X. D. Characterization of chloride currents and their noradrenergic modulation in rat taste receptor cells. J. Neurophysiol. 82, 260–271 (1999).

    CAS  PubMed  Google Scholar 

  26. Yamamoto, T., Nagai, T., Shimura, T. & Yasoshima, Y. Roles of chemical mediators in the taste system. Jpn J. Pharmacol. 76, 325–348 (1998).

    CAS  PubMed  Google Scholar 

  27. Delay, R. J., Kinnamon, S. C. & Roper, S. D. Serotonin modulates voltage-dependent calcium currents in Necturus taste cells. J. Neurophysiol. 77, 2515–2524 (1997).

    CAS  PubMed  Google Scholar 

  28. Herness, S. & Chen, Y. Serotonin inhibits calcium-activated K+ current in rat taste receptor cells. NeuroReport 8, 3257–3261 (1997).

    CAS  PubMed  Google Scholar 

  29. Caicedo, A., Kim, K. N. & Roper, S. D. Glutamate-induced cobalt uptake reveals non-NMDA receptors in rat taste cells. J. Comp. Neurol. 417, 315–324 (2000).

    CAS  PubMed  Google Scholar 

  30. Lawton, D. M., Furness, D. N., Lindemann, B. & Hackney, C. M. Localization of the glutamate-aspartate transporter, GLAST, in rat taste buds. Eur. J. Neurosci. 12, 3163–3171 (2000).

    CAS  PubMed  Google Scholar 

  31. Lindemann, B. Sodium taste. Curr. Opin. Nephrol. Hypertension 6, 425–429 (1997).

    CAS  Google Scholar 

  32. Heck, G. L., Mierson, S. & DeSimone, J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223, 403–405 (1984).

    ADS  CAS  PubMed  Google Scholar 

  33. Canessa, C. M. et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463–467 (1994).

    ADS  CAS  PubMed  Google Scholar 

  34. Kretz, O., Barbry, P., Bock, R. & Lindemann, B. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J. Histochem. Cytochem. 47, 51–64 (1999).

    CAS  PubMed  Google Scholar 

  35. Lin, W., Finger, T. E., Rossier, B. C. & Kinnamon, S. C. Epithelial Na+ channel subunits in rat taste cells: localization and regulation by aldosterone. J. Comp. Neurol. 405, 406–420 (1999).

    CAS  PubMed  Google Scholar 

  36. Avenet, P. & Lindemann, B. Noninvasive recording of receptor cell action potentials and sustained currents from single taste buds maintained in the tongue: the response to mucosal NaCl and amiloride. J. Membr. Biol. 124, 33–41 (1991).

    CAS  PubMed  Google Scholar 

  37. Smith, D. V. & Ossebaard, C. A. Amiloride suppression of the taste intensity of sodium chloride: evidence from direct magnitude scaling. Physiol. Behav. 57, 773–777 (1995).

    CAS  PubMed  Google Scholar 

  38. Gilbertson, T. A., Roper, S. D. & Kinnamon, S. C. Proton currents through amiloride-sensitive Na+ channels in isolated hamster taste cells: enhancement by vasopressin and cAMP. Neuron 10, 931–942 (1993).

    CAS  PubMed  Google Scholar 

  39. Kinnamon, S. C., Dionne, V. E. & Beam, K. G. Apical localization of K channels in taste cells provides the basis for sour taste transduction. Proc. Natl Acad. Sci. USA 85, 7023–7027 (1988).

    ADS  CAS  PubMed  Google Scholar 

  40. Ugawa, S. et al. Receptor that leaves a sour taste in the mouth. Nature 395, 555–556 (1998).

    ADS  CAS  PubMed  Google Scholar 

  41. Miyamoto, T., Fujiyama, R., Okada, Y. & Sato, T. Sour transduction involves activation of NPPB-sensitive conductance in mouse taste cells. J. Neurophysiol. 80, 1852–1859 (1998).

    CAS  PubMed  Google Scholar 

  42. Miyamoto, T., Fujiyama, R., Okada, Y. & Sato, T. Acid and salt responses in mouse taste cells. Prog. Neurobiol. 62, 135–157 (2000).

    CAS  PubMed  Google Scholar 

  43. Stevens, D. R. et al. The hyperpolarization-activated channels HCN1 and 4 mediate responses to sour stimuli. Nature (in the press).

  44. DeSimone, J. A., Callaham, E. M. & Heck, G. L. Chorda tympani taste response of rat to hydrochloric acid subject to voltage-clamped lingual receptive field. Am. J. Physiol. 268, C1295–C1300 (1995).

    CAS  PubMed  Google Scholar 

  45. Stewart, R. E., Lyall, V., Feldman, G. M., Heck, G. L. & DeSimone, J. A. Acid-induced responses in hamster chorda tympani and intracellular pH tracking by taste receptor cells. Am. J. Physiol. 275, C227–C238 (1998).

  46. Spielman, A. I., Huque, T., Whitney, G. & Brand, J. G. in Sensory Transduction (eds Corey, D. P. & Roper, S. D.) 307–324 (The Rockefeller University Press, New York, 1992).

    Google Scholar 

  47. Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).

    CAS  PubMed  Google Scholar 

  48. Matsunami, H., Montmayeur, J.-P. & Buck, L. A family of candidate taste receptors in human and mouse. Nature 404, 601–604 (2000).

    ADS  CAS  PubMed  Google Scholar 

  49. Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).

    CAS  PubMed  Google Scholar 

  50. Dahl, M., Erickson, R. P. & Simon, S. A. Neural responses to bitter compounds in rats. Brain Res. 756, 22–34 (1997).

    CAS  PubMed  Google Scholar 

  51. Naim, M., Seifert, R., Nürnberg, B., Grünbaum, L. & Schultz, G. Some taste substances are direct activators of G-proteins. Biochem. J. 297, 451–454 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cummings, T. A. & Kinnamon, S. C. Apical K+ channels in Necturus taste cells—modulation by intracellular factors and taste stimuli. J. Gen. Physiol. 99, 591–613 (1992).

    CAS  PubMed  Google Scholar 

  53. Tsunenari, T. et al. A quinine-activated cationic conductance in vertebrate taste receptor cells. J. Gen. Physiol. 108, 515–523 (1996).

    CAS  PubMed  Google Scholar 

  54. Spielman, A. I. et al. A method for isolating and patch-clamping single mammalian taste receptor cells. Brain Res. 503, 326–329 (1989).

    CAS  PubMed  Google Scholar 

  55. Rosenzweig, S., Yan, W., Dasso, M. & Spielman, A. I. Possible novel mechanism for bitter taste mediated through cGMP. J. Neurophysiol. 81, 1661–1665 (1999).

    CAS  PubMed  Google Scholar 

  56. Kretz, O., Bock, R. & Lindemann, B. Occurrence of nitric oxide synthase in taste buds of the rat vallate papilla. Histochem. J. 30, 293–299 (1998).

    CAS  Google Scholar 

  57. Wong, G. T., Gannon, K. S. & Margolskee, R. F. Transduction of bitter and sweet taste by gustducin. Nature 381, 796–800 (1996).

    ADS  CAS  PubMed  Google Scholar 

  58. Spickofsky, N. et al. Biochemical analysis of the transducin-phosphodiesterase interaction. Nature Struct. Biol. 1, 771–781 (1994).

    CAS  PubMed  Google Scholar 

  59. Yan, W. et al. Bitter taste transduced by PLC-β2-dependent rise in IP3 and α-gustducin-dependent fall in cyclic nucleotides. Am. J. Physiol. Cell Physiol. 280, C742–C751 (2001).

    CAS  PubMed  Google Scholar 

  60. Huang, L. et al. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nature Neurosci. 2, 1055–1062 (1999).

    CAS  PubMed  Google Scholar 

  61. Rössler, P., Kroner, C., Freitag, J., Noé, J. & Breer, H. Identification of a phospholipase c β subtype in rat taste cells. Eur. J. Cell Biol. 77, 253–261 (1998).

    PubMed  Google Scholar 

  62. Rössler, P. et al. G protein betagamma complexes in circumvallate taste cells involved in bitter transduction. Chem. Senses 25, 413–421 (2000).

    PubMed  Google Scholar 

  63. Spielman, A. I., Huque, T., Nagai, H., Whitney, G. & Brand, J. G. Generation of inositol phosphates in bitter taste transduction. Physiol. Behav. 56, 1149–1155 (1994).

    CAS  PubMed  Google Scholar 

  64. Spielman, A. I. et al. Rapid kinetics of second messenger formation in bitter taste. Am. J. Physiol. Cell Physiol. 270, C926–C931 (1996).

    CAS  Google Scholar 

  65. Clapp, T. R., Stone, L. M., Margolskee, R. F. & Kinnamon, S. C. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci. 2, 6 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Miyoshi, M. A., Abe, K. & Emori, Y. IP3 receptor type 3 and PLCβ2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem. Senses 26, 259–265 (2001).

    CAS  PubMed  Google Scholar 

  67. Ogura, T. & Kinnamon, S. C. IP3-Independent release of Ca2+ from intracellular stores: a novel mechanism for transduction of bitter stimuli. J. Neurophysiol. 82, 2657–2666 (1999).

    CAS  PubMed  Google Scholar 

  68. Nofre, C. & Tinti, J. M. Sweetness reception in man: the multipoint attachment theory. Food Chem. 56, 263–274 (1996).

    CAS  Google Scholar 

  69. Ishimoto, H., Matsumoto, A. & Tanimura, T. Molecular identification of a taste receptor gene for trehalose in Drosophila. Science 289, 116–119 (2000).

    ADS  CAS  PubMed  Google Scholar 

  70. Ninomiya, Y., Sako, N. & Funakoshi, M. Selective effects of the dpa gene on the ability to taste D-phenylalanine in mice. Proc. Jpn Symp. Taste Smell 21, 153–156 (1987).

    Google Scholar 

  71. Lush, I. E. The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. Genet. Res. 53, 95–99 (1989).

    CAS  PubMed  Google Scholar 

  72. Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nature Genet. 28, 58–63 (2001).

    CAS  PubMed  Google Scholar 

  73. Montmayeur, J. P., Liberles, S. D., Matsunami, H. & Buck, L. B. A candidate taste receptor gene near a sweet taste locus. Nature Neurosci. 4, 492–498 (2001).

    CAS  PubMed  Google Scholar 

  74. Kitagawa, M., Kusakabe, Y., Miura, H., Ninomiya, Y. & Hino, A. Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem. Biophys. Res. Commun. 283, 236–242 (2001).

    CAS  PubMed  Google Scholar 

  75. Sainz, E., Korley, J. N., Battey, J. F. & Sullivan, S. L. Identification of a novel member of the T1R family of putative taste receptors. J. Neurochem. 77, 896–903 (2001).

    CAS  PubMed  Google Scholar 

  76. Hoon, M. A. et al. Putative mammalian taste receptors: a class of taste specific GPCRs with distinct topographic selectivity. Cell 96, 541–551 (1999).

    CAS  PubMed  Google Scholar 

  77. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    CAS  PubMed  Google Scholar 

  78. Avenet, P., Hofmann, F. & Lindemann, B. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature 331, 351–354 (1988).

    ADS  CAS  PubMed  Google Scholar 

  79. Tonosaki, K. & Funakoshi, M. Cyclic nucleotides may mediate taste transduction. Nature 331, 354–356 (1988).

    ADS  CAS  PubMed  Google Scholar 

  80. Béhé, P., DeSimone, J. A., Avenet, P. & Lindemann, B. Membrane currents in taste cells of the rat fungiform papilla: evidence for two types of Ca currents and inhibition of K currents by saccharin. J. Gen. Physiol. 96, 1061–1084 (1990).

    PubMed  Google Scholar 

  81. Striem, B., Pace, U., Zehavi, U., Naim, M. & Lancet, D. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem. J. 260, 121–126 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Striem, B. J., Naim, M. & Lindemann, B. Generation of cyclic AMP in taste buds of the rat circumvallate papilla in response to sucrose. Cell. Physiol. Biochem. 1, 46–54 (1991).

    CAS  Google Scholar 

  83. Cummings, T. A., Powell, J. & Kinnamon, S. C. Sweet taste transduction in hamster taste cells: evidence for the role of cyclic nucleotides. J. Neurophysiol. 70, 2326–2336 (1993).

    CAS  PubMed  Google Scholar 

  84. Cummings, T. A., Daniels, C. & Kinnamon, S. C. Sweet taste transduction in hamster: sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+ current. J. Neurophysiol. 75, 1256–1263 (1996).

    CAS  PubMed  Google Scholar 

  85. Uchida, Y. & Sato, T. Changes in outward K+ currents in response to two types of sweeteners in sweet taste transduction of gerbil taste cells. Chem. Senses 22, 163–169 (1997).

    CAS  PubMed  Google Scholar 

  86. Nakashima, K. & Ninomiya, Y. Transduction for sweet taste of saccharin may involve both inositol 1,4,5-trisphosphate and cAMP pathways in the fungiform taste buds in C57BL mice. Cell. Physiol. Biochem. 9, 90–98 (1999).

    CAS  PubMed  Google Scholar 

  87. Ishimaru, Y., Yasuoka, A., Asano-Miyoshi, M., Abe, K. & Emori, Y. An actin-binding protein, CAP, is expressed in a subset of rat taste bud cells. NeuroReport 12, 233–235 (2001).

    CAS  PubMed  Google Scholar 

  88. Misaka, T., Kusakabe, Y., Emori, Y., Arai, S. & Abe, K. Molecular cloning and taste bud-specific expression of a novel cyclic nucleotide-gated channel. Ann. NY Acad. Sci. 855, 150–159 (1998).

    ADS  CAS  PubMed  Google Scholar 

  89. Varkevisser, B. & Kinnamon, S. C. Sweet taste transduction in hamster: role of protein kinases. J. Neurophysiol. 83, 2526–2532 (2000).

    CAS  PubMed  Google Scholar 

  90. Krizhanovsky, V., Agamy, O. & Naim, M. Sucrose-stimulated subsecond transient increase in cGMP level in rat intact circumvallate taste bud cells. Am. J. Physiol. Cell Physiol. 279, C120–C125 (2000).

    CAS  PubMed  Google Scholar 

  91. Kawai, K., Sugimoto, K., Nakashima, K., Miura, H. & Ninomiya, Y. Leptin as a modulator of sweet taste sensitivities in mice. Proc. Natl Acad. Sci. USA 97, 11044–11049 (2000).

    ADS  CAS  PubMed  Google Scholar 

  92. Ninomiya, Y. et al. Leptin and sweet taste. Vitam. Horm. (in the press).

  93. Ikeda, K. On a new seasoning. J. Tokyo Chem. Soc. 30, 820–836 (1909). [In Japanese.]

    Google Scholar 

  94. Chaudhari, N., Landin, A. M. & Roper, S. D. A novel metabotropic glutamate receptor functions as a taste receptor. Nature Neurosci. 3, 113–119 (2000).

    CAS  PubMed  Google Scholar 

  95. Delay, E. R. et al. Taste preference synergy between glutamate receptor agonists and inosine monophosphate in rats. Chem. Senses 25, 507–515 (2000).

    CAS  PubMed  Google Scholar 

  96. Bigiani, A., Delay, R. J., Chaudhari, N., Kinnmon, S. C. & Roper, S. D. Responses to glutamate in rat taste cells. J. Neurophysiol. 77, 3048–3059 (1997).

    CAS  PubMed  Google Scholar 

  97. Lin, W. & Kinnamon, S. C. Physiological evidence for ionotropic and metabotropic glutamate receptors in rat taste cells. J. Neurophysiol. 82, 2061–2069 (1999).

    CAS  PubMed  Google Scholar 

  98. Brand, J. G. Receptor and transduction processes for umami taste. J. Nutr. 130, 942S–945S (2000).

    CAS  PubMed  Google Scholar 

  99. Stevens, J. C., Cruz, L. A., Hoffman, J. M. & Patterson, M. Q. Taste sensitivity and aging: high incidence of decline revealed by repeated threshold measures. Chem. Senses 20, 451–459 (1995).

    CAS  PubMed  Google Scholar 

  100. Zhu, X., Gilbert, S., Birnbaumer, M. & Birnbaumer, L. Dual signaling potential is common among Gs-coupled receptors and dependent on receptor density. Mol. Pharmacol. 46, 460–469 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Owing to limitations of space, the important work of many colleagues could not be cited, for which I apologize. I thank S. C. Kinnamon and R. F. Margolskee for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Lindemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindemann, B. Receptors and transduction in taste. Nature 413, 219–225 (2001). https://doi.org/10.1038/35093032

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35093032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing