Abstract
Taste is the sensory system devoted primarily to a quality check of food to be ingested. Although aided by smell and visual inspection, the final recognition and selection relies on chemoreceptive events in the mouth. Emotional states of acute pleasure or displeasure guide the selection and contribute much to our quality of life. Membrane proteins that serve as receptors for the transduction of taste have for a long time remained elusive. But screening the mass of genome sequence data that have recently become available has provided a new means to identify key receptors for bitter and sweet taste. Molecular biology has also identified receptors for salty, sour and umami taste.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ganchrow, J. R., Steiner, J. E. & Daher, M. Neonatal facial expressions in response to different qualities and intensities of gustatory stimuli. Infant Behav. Dev. 6, 189â200 (1983).
Pierce-Shimomura, J. T., Faumont, S., Gaston, M. R., Pearson, B. J. & Lockery, S. R. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature 410, 694-698 (2001).
Clyne, P. J., Warr, C. G. & Carlson, J. R. Candidate taste receptors in Drosophila. Science 287, 1830â1834 (2000).
Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661â673 (2001).
Stone, L. M., Finger, T. E., Tam, P. P. & Tan, S. S. Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc. Natl Acad. Sci. USA 92, 1916â1920 (1995).
McLaughlin, S. K., McKinnon, P. J. & Margolskee, R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563â569 (1992).
Zancanaro, C., Caretta, C. M., Merigo, F., Cavaggioni, A. & Osculati, F. α-Gustducin expression in the vomeronasal organ of the mouse. Eur. J. Neurosci. 11, 4473â4475 (1999).
Höfer, D., Püschel, B. & Drenckhahn, D. Taste receptor-like cells in the rat gut identified by expression of α-gustducin. Proc. Natl Acad. Sci. USA 93, 6631â6634 (1996).
Hänig, D. P. Zur Psychophysik des Geschmackssinnes. Phil. Stud. 17, 576â623 (1901).
Lindemann, B. Receptor seeks ligand: on the way to cloning the molecular receptors for sweet and bitter taste. Nature Med. 5, 381â382 (1999).
Smith, D. V. & Margolskee, R. F. Making sense of taste. Sci. Am. 284, 26â33 (2001).
Mistretta, C. M., Goosens, K. A., Farinas, I. & Reichardt, L. F. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. J. Comp. Neurol. 409, 13â24 (1999).
Krimm, R. F., Miller, K. K., Kitzman, P. H., Davis, B. M. & Albers, K. M. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue. Dev. Biol. 232, 508â521 (2001).
Lundy, R. F. Jr & Contreras, R. J. Gustatory neuron types in rat geniculate ganglion. J. Neurophysiol. 82, 2970â2988 (1999).
Gilbertson, T. A., Boughter, J. D. Jr, Z. hang, H. & Smith, D. V. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J. Neurosci. 21, 4931â4941 (2001).
Erickson, R. P. The evolution of neural coding ideas in the chemical senses. Physiol. Behav. 69, 3â13 (2000).
Roper, S. D. Regenerative impulses in taste cells. Science 220, 1311â1312 (1983).
Avenet, P. & Lindemann, B. Patch-clamp study of isolated taste receptor cells of the frog. J. Membr. Biol. 97, 223â240 (1987).
Lindemann, B. Taste reception. Physiol. Rev. 76, 719â766 (1996).
Akabas, M. H., Dodd, J. & Al-Awqati, Q. A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells. Science 242, 1047â1050 (1988).
Bernhardt, S. J., Naim, M., Zehavi, U. & Lindemann, B. Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J. Physiol. 490, 325â336 (1996).
Caicedo, A. & Roper, S. D. Taste receptor cells that discriminate between bitter stimuli. Science 291, 1557â1560 (2001).
Zviman, M. M., Restrepo, D. & Teeter, J. H. Single taste stimuli elicit either increases and decreases in intracellular calcium in isolated catfish taste cells. J. Membr. Biol. 149, 81â88 (1996).
Hayashi, Y., Zviman, M. M., Brand, J. G., Teeter, J. H. & Restrepo, D. Measurement of membrane potential and [Ca2+]i in cell ensembles: application to the study of glutamate taste in mouse. Biophys. J. 71, 1057â1070 (1996).
Herness, M. S. & Sun, X. D. Characterization of chloride currents and their noradrenergic modulation in rat taste receptor cells. J. Neurophysiol. 82, 260â271 (1999).
Yamamoto, T., Nagai, T., Shimura, T. & Yasoshima, Y. Roles of chemical mediators in the taste system. Jpn J. Pharmacol. 76, 325â348 (1998).
Delay, R. J., Kinnamon, S. C. & Roper, S. D. Serotonin modulates voltage-dependent calcium currents in Necturus taste cells. J. Neurophysiol. 77, 2515â2524 (1997).
Herness, S. & Chen, Y. Serotonin inhibits calcium-activated K+ current in rat taste receptor cells. NeuroReport 8, 3257â3261 (1997).
Caicedo, A., Kim, K. N. & Roper, S. D. Glutamate-induced cobalt uptake reveals non-NMDA receptors in rat taste cells. J. Comp. Neurol. 417, 315â324 (2000).
Lawton, D. M., Furness, D. N., Lindemann, B. & Hackney, C. M. Localization of the glutamate-aspartate transporter, GLAST, in rat taste buds. Eur. J. Neurosci. 12, 3163â3171 (2000).
Lindemann, B. Sodium taste. Curr. Opin. Nephrol. Hypertension 6, 425â429 (1997).
Heck, G. L., Mierson, S. & DeSimone, J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223, 403â405 (1984).
Canessa, C. M. et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463â467 (1994).
Kretz, O., Barbry, P., Bock, R. & Lindemann, B. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J. Histochem. Cytochem. 47, 51â64 (1999).
Lin, W., Finger, T. E., Rossier, B. C. & Kinnamon, S. C. Epithelial Na+ channel subunits in rat taste cells: localization and regulation by aldosterone. J. Comp. Neurol. 405, 406â420 (1999).
Avenet, P. & Lindemann, B. Noninvasive recording of receptor cell action potentials and sustained currents from single taste buds maintained in the tongue: the response to mucosal NaCl and amiloride. J. Membr. Biol. 124, 33â41 (1991).
Smith, D. V. & Ossebaard, C. A. Amiloride suppression of the taste intensity of sodium chloride: evidence from direct magnitude scaling. Physiol. Behav. 57, 773â777 (1995).
Gilbertson, T. A., Roper, S. D. & Kinnamon, S. C. Proton currents through amiloride-sensitive Na+ channels in isolated hamster taste cells: enhancement by vasopressin and cAMP. Neuron 10, 931â942 (1993).
Kinnamon, S. C., Dionne, V. E. & Beam, K. G. Apical localization of K channels in taste cells provides the basis for sour taste transduction. Proc. Natl Acad. Sci. USA 85, 7023â7027 (1988).
Ugawa, S. et al. Receptor that leaves a sour taste in the mouth. Nature 395, 555â556 (1998).
Miyamoto, T., Fujiyama, R., Okada, Y. & Sato, T. Sour transduction involves activation of NPPB-sensitive conductance in mouse taste cells. J. Neurophysiol. 80, 1852â1859 (1998).
Miyamoto, T., Fujiyama, R., Okada, Y. & Sato, T. Acid and salt responses in mouse taste cells. Prog. Neurobiol. 62, 135â157 (2000).
Stevens, D. R. et al. The hyperpolarization-activated channels HCN1 and 4 mediate responses to sour stimuli. Nature (in the press).
DeSimone, J. A., Callaham, E. M. & Heck, G. L. Chorda tympani taste response of rat to hydrochloric acid subject to voltage-clamped lingual receptive field. Am. J. Physiol. 268, C1295âC1300 (1995).
Stewart, R. E., Lyall, V., Feldman, G. M., Heck, G. L. & DeSimone, J. A. Acid-induced responses in hamster chorda tympani and intracellular pH tracking by taste receptor cells. Am. J. Physiol. 275, C227âC238 (1998).
Spielman, A. I., Huque, T., Whitney, G. & Brand, J. G. in Sensory Transduction (eds Corey, D. P. & Roper, S. D.) 307â324 (The Rockefeller University Press, New York, 1992).
Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693â702 (2000).
Matsunami, H., Montmayeur, J.-P. & Buck, L. A family of candidate taste receptors in human and mouse. Nature 404, 601â604 (2000).
Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703â711 (2000).
Dahl, M., Erickson, R. P. & Simon, S. A. Neural responses to bitter compounds in rats. Brain Res. 756, 22â34 (1997).
Naim, M., Seifert, R., Nürnberg, B., Grünbaum, L. & Schultz, G. Some taste substances are direct activators of G-proteins. Biochem. J. 297, 451â454 (1994).
Cummings, T. A. & Kinnamon, S. C. Apical K+ channels in Necturus taste cellsâmodulation by intracellular factors and taste stimuli. J. Gen. Physiol. 99, 591â613 (1992).
Tsunenari, T. et al. A quinine-activated cationic conductance in vertebrate taste receptor cells. J. Gen. Physiol. 108, 515â523 (1996).
Spielman, A. I. et al. A method for isolating and patch-clamping single mammalian taste receptor cells. Brain Res. 503, 326â329 (1989).
Rosenzweig, S., Yan, W., Dasso, M. & Spielman, A. I. Possible novel mechanism for bitter taste mediated through cGMP. J. Neurophysiol. 81, 1661â1665 (1999).
Kretz, O., Bock, R. & Lindemann, B. Occurrence of nitric oxide synthase in taste buds of the rat vallate papilla. Histochem. J. 30, 293â299 (1998).
Wong, G. T., Gannon, K. S. & Margolskee, R. F. Transduction of bitter and sweet taste by gustducin. Nature 381, 796â800 (1996).
Spickofsky, N. et al. Biochemical analysis of the transducin-phosphodiesterase interaction. Nature Struct. Biol. 1, 771â781 (1994).
Yan, W. et al. Bitter taste transduced by PLC-β2-dependent rise in IP3 and α-gustducin-dependent fall in cyclic nucleotides. Am. J. Physiol. Cell Physiol. 280, C742âC751 (2001).
Huang, L. et al. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nature Neurosci. 2, 1055â1062 (1999).
Rössler, P., Kroner, C., Freitag, J., Noé, J. & Breer, H. Identification of a phospholipase c β subtype in rat taste cells. Eur. J. Cell Biol. 77, 253â261 (1998).
Rössler, P. et al. G protein betagamma complexes in circumvallate taste cells involved in bitter transduction. Chem. Senses 25, 413â421 (2000).
Spielman, A. I., Huque, T., Nagai, H., Whitney, G. & Brand, J. G. Generation of inositol phosphates in bitter taste transduction. Physiol. Behav. 56, 1149â1155 (1994).
Spielman, A. I. et al. Rapid kinetics of second messenger formation in bitter taste. Am. J. Physiol. Cell Physiol. 270, C926âC931 (1996).
Clapp, T. R., Stone, L. M., Margolskee, R. F. & Kinnamon, S. C. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci. 2, 6 (2001).
Miyoshi, M. A., Abe, K. & Emori, Y. IP3 receptor type 3 and PLCβ2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem. Senses 26, 259â265 (2001).
Ogura, T. & Kinnamon, S. C. IP3-Independent release of Ca2+ from intracellular stores: a novel mechanism for transduction of bitter stimuli. J. Neurophysiol. 82, 2657â2666 (1999).
Nofre, C. & Tinti, J. M. Sweetness reception in man: the multipoint attachment theory. Food Chem. 56, 263â274 (1996).
Ishimoto, H., Matsumoto, A. & Tanimura, T. Molecular identification of a taste receptor gene for trehalose in Drosophila. Science 289, 116â119 (2000).
Ninomiya, Y., Sako, N. & Funakoshi, M. Selective effects of the dpa gene on the ability to taste D-phenylalanine in mice. Proc. Jpn Symp. Taste Smell 21, 153â156 (1987).
Lush, I. E. The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. Genet. Res. 53, 95â99 (1989).
Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nature Genet. 28, 58â63 (2001).
Montmayeur, J. P., Liberles, S. D., Matsunami, H. & Buck, L. B. A candidate taste receptor gene near a sweet taste locus. Nature Neurosci. 4, 492â498 (2001).
Kitagawa, M., Kusakabe, Y., Miura, H., Ninomiya, Y. & Hino, A. Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem. Biophys. Res. Commun. 283, 236â242 (2001).
Sainz, E., Korley, J. N., Battey, J. F. & Sullivan, S. L. Identification of a novel member of the T1R family of putative taste receptors. J. Neurochem. 77, 896â903 (2001).
Hoon, M. A. et al. Putative mammalian taste receptors: a class of taste specific GPCRs with distinct topographic selectivity. Cell 96, 541â551 (1999).
Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381â390 (2001).
Avenet, P., Hofmann, F. & Lindemann, B. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature 331, 351â354 (1988).
Tonosaki, K. & Funakoshi, M. Cyclic nucleotides may mediate taste transduction. Nature 331, 354â356 (1988).
Béhé, P., DeSimone, J. A., Avenet, P. & Lindemann, B. Membrane currents in taste cells of the rat fungiform papilla: evidence for two types of Ca currents and inhibition of K currents by saccharin. J. Gen. Physiol. 96, 1061â1084 (1990).
Striem, B., Pace, U., Zehavi, U., Naim, M. & Lancet, D. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem. J. 260, 121â126 (1989).
Striem, B. J., Naim, M. & Lindemann, B. Generation of cyclic AMP in taste buds of the rat circumvallate papilla in response to sucrose. Cell. Physiol. Biochem. 1, 46â54 (1991).
Cummings, T. A., Powell, J. & Kinnamon, S. C. Sweet taste transduction in hamster taste cells: evidence for the role of cyclic nucleotides. J. Neurophysiol. 70, 2326â2336 (1993).
Cummings, T. A., Daniels, C. & Kinnamon, S. C. Sweet taste transduction in hamster: sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+ current. J. Neurophysiol. 75, 1256â1263 (1996).
Uchida, Y. & Sato, T. Changes in outward K+ currents in response to two types of sweeteners in sweet taste transduction of gerbil taste cells. Chem. Senses 22, 163â169 (1997).
Nakashima, K. & Ninomiya, Y. Transduction for sweet taste of saccharin may involve both inositol 1,4,5-trisphosphate and cAMP pathways in the fungiform taste buds in C57BL mice. Cell. Physiol. Biochem. 9, 90â98 (1999).
Ishimaru, Y., Yasuoka, A., Asano-Miyoshi, M., Abe, K. & Emori, Y. An actin-binding protein, CAP, is expressed in a subset of rat taste bud cells. NeuroReport 12, 233â235 (2001).
Misaka, T., Kusakabe, Y., Emori, Y., Arai, S. & Abe, K. Molecular cloning and taste bud-specific expression of a novel cyclic nucleotide-gated channel. Ann. NY Acad. Sci. 855, 150â159 (1998).
Varkevisser, B. & Kinnamon, S. C. Sweet taste transduction in hamster: role of protein kinases. J. Neurophysiol. 83, 2526â2532 (2000).
Krizhanovsky, V., Agamy, O. & Naim, M. Sucrose-stimulated subsecond transient increase in cGMP level in rat intact circumvallate taste bud cells. Am. J. Physiol. Cell Physiol. 279, C120âC125 (2000).
Kawai, K., Sugimoto, K., Nakashima, K., Miura, H. & Ninomiya, Y. Leptin as a modulator of sweet taste sensitivities in mice. Proc. Natl Acad. Sci. USA 97, 11044â11049 (2000).
Ninomiya, Y. et al. Leptin and sweet taste. Vitam. Horm. (in the press).
Ikeda, K. On a new seasoning. J. Tokyo Chem. Soc. 30, 820â836 (1909). [In Japanese.]
Chaudhari, N., Landin, A. M. & Roper, S. D. A novel metabotropic glutamate receptor functions as a taste receptor. Nature Neurosci. 3, 113â119 (2000).
Delay, E. R. et al. Taste preference synergy between glutamate receptor agonists and inosine monophosphate in rats. Chem. Senses 25, 507â515 (2000).
Bigiani, A., Delay, R. J., Chaudhari, N., Kinnmon, S. C. & Roper, S. D. Responses to glutamate in rat taste cells. J. Neurophysiol. 77, 3048â3059 (1997).
Lin, W. & Kinnamon, S. C. Physiological evidence for ionotropic and metabotropic glutamate receptors in rat taste cells. J. Neurophysiol. 82, 2061â2069 (1999).
Brand, J. G. Receptor and transduction processes for umami taste. J. Nutr. 130, 942Sâ945S (2000).
Stevens, J. C., Cruz, L. A., Hoffman, J. M. & Patterson, M. Q. Taste sensitivity and aging: high incidence of decline revealed by repeated threshold measures. Chem. Senses 20, 451â459 (1995).
Zhu, X., Gilbert, S., Birnbaumer, M. & Birnbaumer, L. Dual signaling potential is common among Gs-coupled receptors and dependent on receptor density. Mol. Pharmacol. 46, 460â469 (1994).
Acknowledgements
Owing to limitations of space, the important work of many colleagues could not be cited, for which I apologize. I thank S. C. Kinnamon and R. F. Margolskee for comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lindemann, B. Receptors and transduction in taste. Nature 413, 219â225 (2001). https://doi.org/10.1038/35093032
Issue Date:
DOI: https://doi.org/10.1038/35093032
This article is cited by
-
Post-COVID-19 patients suffer from chemosensory, trigeminal, and salivary dysfunctions
Scientific Reports (2024)
-
Contribution of TRPC3-mediated Ca2+ entry to taste transduction
Pflügers Archiv - European Journal of Physiology (2023)
-
Cultural Intolerance, in Practice: Social Variation in Food and Drink Avoidances in Italy, 2003â2016
Social Indicators Research (2023)
-
Virtual taste: digital simulation of taste sensations via electric, thermal, and hybrid stimulations
Multimedia Tools and Applications (2023)
-
The preference for sugar over sweetener depends on a gut sensor cell
Nature Neuroscience (2022)