Abstract
Electrons can be made to pass through a circuit one by one, in nanoscale devices based on the combination of the Coulomb interaction between electrons and their passage by quantum tunnelling through an insulating barrier. Single-electron devices provide a new way of measuring the charge quantum, and clarify how electronic signal processing at the molecular level might function.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Eigler, D. M. & Schweizer, E. K. Nature 344, 524 (1990).
Wineland, D. J., Itano, W. M. & Van Dyck, R. S. Jr Adv. atom. molec. Phys. 19, 135 (1983).
Van Dyck, R. S. Jr, Schwinberg, P. B. & Dehmelt, H. G. Phys. Rev. D34, 722 (1986).
Millikan, R. A. Phys. Rev. 32, 349 (1911).
Solymar, L. Superconductive Tunneling, Ch. 2 (Chapman and Hall, London. 1972).
Büttiker, M. & Landauer, R. Phys. Rev. Lett. 49, 1739 (1982).
Personn B. N. J. & Baratoff, A. Phys. Rev. B38, 9616 (1988).
Lafarge, P. et al. Z. Phys. B85, 327 (1981).
Esteve, D. Single Charge Tunneling, Ch. 3 (ed. Grabert, H. & Devoret, M. H.) (Plenum, New York, 1992).
Matveev, K. A. Zh. eksp. teor. Fiz. 99, 1598 (1991); (Engl. transl.) Sov. Phys. JETP 72, 892 (1991).
Gorter, C. J. Physica 17, 777 (1951).
Neugebauer, C. A. & Webb, M. B. J. appl. Phys. 33, 74 (1962).
Giaver, I. & Zeller, H. R. Phys. Rev. Lett. 20, 1504 (1968).
Lambe, J. & Jaklevic, R. C. Phys. Rev. Lett. 22, 1371 (1969).
Kulik, I. O. & Shekter, R. I. Zh. eksp. teor. Fiz. 68, 623 (1975); (Engl. transl.) Sov. Phys. JETP 41, 308 (1075).
Dolan, G. J. & Dunsmuir, J. H. Physica B152, 7 (1988).
Fulton, T. A. & Dolan, G. J. Phys. Rev. Lett. 59, 109 (1987).
Likharev, K. K. & Zorin, A. B. J. low Temp. Phys. 59, 347 (1985).
Averin, D. V. & Likharev, K. K. J. low Temp. Phys. 62, 345 (1986).
Widom, A., Megaloudis, G., Clark, T. D., Prance, H. & Prance, R. J. J. Phys. A15, 3877 (1982).
Ben-Jacob, E. & Gefen, Y. Phys. Lett. A108, 289 (1985).
Nazarov, Yu. V. Pis'maZh. eksp. teor. Fiz. 49, 105 (1989); (Engl. transl.) JETP Lett. 49, 126 (1990).
Devoret, M. H. et al. Phys. Rev. Lett. 64, 1824 (1990).
Girvin, S. M., Glazman, L. I., Jonson, M., Penn, D. R. & Stiles, M. D. Phys. Rev. Lett. 64, 3318 (1990).
Cleland, A. N., Schmidt, J. M. & Clarke, J. Phys. Rev. Lett. 64, 1565 (1990).
Kuzmin, L. S., Nazarov, Yu. V., Haviland, D. B., Delsing, P. & Claeson, T. Phys. Rev. Lett. 67, 1161 (1991).
Likharev, K. K. IBM J. Res. Dev. 32, 144 (1988).
Averin, D. V. & Likharev, K. K., in Quantum Effects in Small Disordered Systems (eds Altshuler, B. L., Lee, P. A. & Webb, R. A.) (Elsevier, Amsterdam, 1991).
Schön, G. & Zaikin, A. D. Phys. Rep. 198, 237 (1990).
Single Charge Tunneling (eds Grabert, H. & Devoret, M. H.) (Plenum, New York, 1992).
Single Charge Tunneling spec. Issue Z. Phys. B85, 317â468 (1991).
Single Electron Tunneling and Mesoscopic Devices, Proc. 4th Int. Conf. SQUID '91 (eds Koch, H. & Lübbig, H.) (Springer, Berlin, 1992).
Cleland, A. N., Esteve, D., Urbina, C. & Devoret, M. H. Appl. Phys. Lett. (in the press).
Fraser, D. A. The Physics of Semiconductor Devices (Clarendon, Oxford, 1986).
Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect (Wiley, New York, 1982).
Beenakker, C. W. J. Single Charge Tunneling, Ch. 5 (eds Grabert, H. & Devoret, M. H.) (Plenum, New York, 1992).
Wilkins, R., Ben-Jacob, E. & Jaklevic, R. D. Phys. Rev. Lett. 63, 801 (1989).
Schönenberger, C. Europhys. Lett. (in the press).
Nejoh, H. Nature 353, 640 (1991).
Pothier, H., Lafarge, P., Urbina, C., Esteve, D. & Devoret, M. H. Physica B169, 573 (1991); Europhys. Lett. 17, 259 (1992).
Geerligs, L. J. et al. Phys. Rev. Lett. 64, 2691 (1990).
von Klitzing, K. Rev. mod. Phys. 58, 519 (1986).
Williams, E. R., Gosh, R. N. & Martinis, J. M. J. Res. Natn. Inst. Stand Technol. 97, (1992).
Averin, D. V. & Odintsov, A. A. Phys. Lett. A149, 251 (1989).
Averin, D. V., Odintsov, A. A. & Vyshenskii, S. V. J. Appl. Phys. (in the press).
Jensen, H. D. & Martinis, J. M. Phys. Rev. B46 (in the press).
Pothier, H., Lafarge, P., Esteve, D., Urbina, C. & Devoret, M. H. IEEE Trans. Magn. (in the press).
Lafarge, P. et al. C. R. Acad. Sci. Paris 314, 883 (1992).
Aviram, A. & Ratner, M. Chem. Phys. Lett. 29, 277 (1974); Molecular Electronic Devices (ed. Carter, F. L.) (North-Holland, Amsterdam, 1991).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Devoret, M., Esteve, D. & Urbina, C. Single-electron transfer in metallic nanostructures. Nature 360, 547â553 (1992). https://doi.org/10.1038/360547a0
Issue Date:
DOI: https://doi.org/10.1038/360547a0
This article is cited by
-
Single-electron pumping in a ZnO single-nanobelt quantum dot transistor
Science China Physics, Mechanics & Astronomy (2020)
-
Patterning nanofibrils through the templated growth of multiple modified amyloid peptides
Scientific Reports (2016)
-
Transport in serial spinful multiple-dot systems: The role of electron-electron interactions and coherences
Scientific Reports (2016)
-
1D Tight-Binding Models Render Quantum First Passage Time âSpeakableâ
International Journal of Theoretical Physics (2015)
-
Tailoring the magnetic properties of ordered 50-nm-diameter CoNi nanowire arrays
Journal of Nanoparticle Research (2013)