Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pattern recognition computation using action potential timing for stimulus representation

Abstract

A computational model is described in which the sizes of variables are represented by the explicit times at which action potentials occur, rather than by the more usual 'firing rate' of neurons. The comparison of patterns over sets of analogue variables is done by a network using different delays for different information paths. This mode of computation explains how one scheme of neuroarchitecture can be used for very different sensory modalities and seemingly different computations. The oscillations and anatomy of the mammalian olfactory systems have a simple interpretation in terms of this representation, and relate to processing in the auditory system. Single-electrode recording would not detect such neural computing. Recognition 'units' in this style respond more like radial basis function units than elementary sigmoid units.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McClurkin, J. W., Optician, L. M., Richmond, B. J. & Gawne, T. J. Science 253, 675–677 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Bialek, W. & Rieke, F. Trends Neurosci. 15, 428–434 (1992).

    Article  CAS  Google Scholar 

  3. Atick, J. J. Network 3, 213–251 (1992).

    Article  Google Scholar 

  4. Perkel, D. H. & Bullock, T. H. Neurosci. Res. Prog. Bull. 6, 221–248 (1968).

    Google Scholar 

  5. Bullock, T. H. A. Rev. Neurosci. 16, 1–15 (1993).

    Article  CAS  Google Scholar 

  6. Burgess, N., O'Keefe, J. M. & Recce, M. in Advances in Neural Information Processing Systems Vol. 5 (eds Hanson, S. J., Giles, C. L. & Cowan, J. D.) 929–936 (Morgan Kaufman, San Mateo, CA, 1993).

    Google Scholar 

  7. Heiligenberg, W. F. Neural Nets in Electric Fish 51–60 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  8. Reichardt, W. Z. Naturf. 12b, 448–457 (1957).

    Article  Google Scholar 

  9. Carr, C. E. & Konishi, K. J. Neurosci. 10, 3227–3246 (1990).

    Article  CAS  Google Scholar 

  10. Kauer, J. S. Trends Neurosci. 14, 79–85 (1991).

    Article  CAS  Google Scholar 

  11. Herz, J., Krogh, A. & Palmer, R. G. Introduction to the Theory of Neural Computation (Addison Wesley, Redwood City, CA, 1991).

    Google Scholar 

  12. Alonso, A. & Llinas, R. R. Nature 342, 175–177 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Silva, L. R., Amital, Y. & Connors, B. W. Science 252, 432–435 (1991).

    Article  ADS  Google Scholar 

  14. Shepherd, G. M. & Brayton, R. K. Brain Res. 175, 377–382 (1979).

    Article  CAS  Google Scholar 

  15. Rodieck, R. W. The Vertebrate Retina (Freeman, San Francisco, 1973).

    Google Scholar 

  16. Tank, D. W. & Hopfield, J. J. Proc. natn. Acad. Sci. U.S.A. 84, 1896–1900 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Kuwabara, N. & Suga, N. J. Neurophysiol. 69, 1713–1724 (1993).

    Article  CAS  Google Scholar 

  18. Unnikrishnan, K. P., Hopfield, J. J. & Tank, D. W. IEEE Trans. Signal. Process 39, 698–713 (1991).

    Article  ADS  Google Scholar 

  19. Adrian, E. D. J. Physiol., Lond. 100, 459–473 (1941).

    Article  Google Scholar 

  20. Shepherd, G. M. The Synaptic Organization of the Brain 152–183 (Oxford Univ. Press, Oxford, 1979).

    Google Scholar 

  21. Haberly, L. Chem. Senses 10, 219–238 (1985).

    Article  Google Scholar 

  22. Nickell, W. T. & Shipley, M. T. in Science of Olfaction (eds Serby, M. J. & Chobor, K. L.) 172–212 (Springer, New York, 1992).

    Book  Google Scholar 

  23. Laurent, G. & Naraghi, M. J. Neurosci. 14, 2993–3004 (1994).

    Article  CAS  Google Scholar 

  24. Delaney, K. R. et al. Proc. natn. Acad. Sci. U.S.A. 91, 669–673 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Tank, D. W., Gelperin, A. & Kleinfeld, D. Science 265, 1819–1820 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Shepherd, G. M. The Synaptic Organization of the Brain 289–307 (Oxford Univ. Press, Oxford, 1979).

    Google Scholar 

  27. Eckhorn, R. et al. Biol. Cybern. 60, 121–130 (1988).

    Article  CAS  Google Scholar 

  28. Gray, C. M. & Singer, W. Proc. natn. Acad. Sci. U.S.A. 86, 1698–1702 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Carr, C. E. & Konishi, M. Proc. natn. Acad. Sci. U.S.A. 85, 8311–8315 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Harnischfeger, G., Neuweiler, G. & Schlegel, P. J. Neurophysiol. 53, 89–109 (1985).

    Article  CAS  Google Scholar 

  31. Revial, M. F., Sicard, G., Duchamp, A. & Holley, A. Chem. Senses 7, 175–190 (1982).

    Article  CAS  Google Scholar 

  32. Girosi, F. & Poggio, T. Biol. Cybern. 63, 169–176 (1990).

    Article  Google Scholar 

  33. Hossam, O. & Fahmy, M. M. Neural Computat. 6, 927–943 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopfield, J. Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36 (1995). https://doi.org/10.1038/376033a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376033a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing