Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere

Abstract

A 20-Myr record of creation of oceanic lithosphere is exposed along a segment of the central Mid-Atlantic Ridge on an uplifted sliver of lithosphere. The degree of melting of the mantle that is upwelling below the ridge, estimated from the chemistry of the exposed mantle rocks, as well as crustal thickness inferred from gravity measurements, show oscillations of ∼3–4 Myr superimposed on a longer-term steady increase with time. The time lag between oscillations of mantle melting and crustal thickness indicates that the mantle is upwelling at an average rate of ∼25 mm yr-1, but this appears to vary through time. Slow-spreading lithosphere seems to form through dynamic pulses of mantle upwelling and melting, leading not only to along-axis segmentation but also to across-axis structural variability. Also, the central Mid-Atlantic Ridge appears to have become steadily hotter over the past 20 Myr, possibly owing to north–south mantle flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Vema transform region viewed from the northeast.
Figure 2: N–S multichannel seismic reflection profile perpendicular to the Vema transform, above the Nautile submersible profiles.
Figure 3: Temporal variations of mantle degree of melting and of crustal thickness.
Figure 4: Gravity imagery in the Vema transform region.
Figure 5: Differential upwelling of melt and of solid residual mantle beneath the ridge.
Figure 6: Model of mantle upwelling and crustal accretion consistent with the observed variations of extent of melting and crustal thickness at the EMARS.
Figure 7: Extent of melting versus ridge half segment length when a ridge intersects a long-offset slow-slip transform such as Vema.

Similar content being viewed by others

References

  1. Macdonald, K. C. et al. A new view of the mid ocean ridge from the behaviour of ridge axis discontinuities. Nature 335, 217–225 (1988)

    Article  ADS  Google Scholar 

  2. Lin, J., Purdy, G. M., Shouten, H., Sempere, J. C. & Zervas, C. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature 344, 627–632 (1990)

    Article  ADS  Google Scholar 

  3. Phipps Morgan, J. & Parmentier, E. M. Crenulated seafloor: Evidence for spreading-rate dependent structure of mantle upwelling and melting beneath a mid-oceanic spreading center. Earth Planet. Sci. Lett. 129, 73–84 (1995)

    Article  ADS  Google Scholar 

  4. Auzende, J. M. et al. Direct observation of a section through slow-spreading oceanic crust. Nature 337, 726–729 (1989)

    Article  ADS  Google Scholar 

  5. Kastens, K. et al. The Vema transverse ridge (Central Atlantic). Mar. Geophys. Res. 20, 533–556 (1998)

    Article  Google Scholar 

  6. Gasperini, L. et al. Time constraints on the emplacement of an uplifted sliver of lithosphere at the Vema transverse ridge (Central Atlantic). J. Conf. Abstr. 4, 757 (1999)

    Google Scholar 

  7. Cande, S. C., LaBreque, J. L. & Haxby, W. F. Plate kinematics of the south Atlantic, chron C34 to the present. J. Geophys. Res. 93, 13479–13492 (1988)

    Article  ADS  Google Scholar 

  8. Dick, H. J. B., Fisher, R. L. & Bryan, W. B. Mineralogic variability of the uppermost mantle along mid ocean ridges. Earth Planet. Sci. Lett. 69, 88–106 (1984)

    Article  ADS  CAS  Google Scholar 

  9. Michael, P. J. & Bonatti, E. Peridotite composition from the North Atlantic; regional and tectonic variations and implications for partial melting. Earth Planet. Sci. Lett. 73, 91–104 (1985)

    Article  ADS  CAS  Google Scholar 

  10. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661–2678 (1990)

    Article  ADS  Google Scholar 

  11. Jaques, A. L. & Green, D. H. Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol. 73, 287–310 (1980)

    Article  ADS  CAS  Google Scholar 

  12. Mysen, B. O. & Kushiro, I. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. Am. Mineral. 62, 843–865 (1977)

    CAS  Google Scholar 

  13. Hellebrand, E., Snow, J. E., Dick, H. J. B. & Hofmann, A. W. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677–681 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Seyler, M. & Bonatti, E. Regional-scale melt-rock interaction in lherzolitic mantle in the Romanche fracture zone (Atlantic Ocean). Earth Planet. Sci. Lett. 146, 273–287 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Brunelli, D. Variazioni temporali nei processi di formazione di litosfera lungo le dorsali medio-oceaniche Thesis, Univ. Bologna (2001)

    Google Scholar 

  16. Forsyth, D. W. Crustal thickness and the average depth and degree of melting in fractional melting models of passive flow beneath mid-ocean ridges. J. Geophys. Res. 98, 16073–16079 (1993)

    Article  ADS  Google Scholar 

  17. Sandwell, D. T. & Smith, W. H. F. Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J. Geophys. Res. 102, 10039–10054 (1997)

    Article  ADS  Google Scholar 

  18. Li, J. & Sideris, M. G. Marine gravity and geoid determination by optimal combination of satellite altimetry and shipborne gravimetry data. J. Geodesy 71, 209–216 (1997)

    Article  ADS  Google Scholar 

  19. Kuo, B. Y. & Forsyth, D. W. Gravity anomalies of the ridge-transform system in the South Atlantic between 31° and 34.5° S: Upwelling centers and variations in crustal thickness. Mar. Geophys. Res. 10, 205–232 (1988)

    Article  Google Scholar 

  20. Louden, K. E., White, R. S., Potts, C. G. & Forsyth, D. W. Structure and seismotectonics of the Vema fracture zone, Atlantic Ocean. J. Geol. Soc. Lond. 143, 795–805 (1986)

    Article  Google Scholar 

  21. Potts, C. G., White, R. S. & Louden, K. E. Crustal structure of Atlantic fracture zones: II, The Vema fracture zone and transverse ridge. Geophys. J. R. Astron. Soc. 86, 491–513 (1986)

    Article  ADS  Google Scholar 

  22. Spiegelman, M. & Kenyon, P. M. The requirements for chemical disequilibrium during magma migration. Earth Planet. Sci. Lett. 109, 611–620 (1992)

    Article  ADS  CAS  Google Scholar 

  23. Spiegelman, M. & Elliott, T. Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett. 118, 1–20 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Lundstrom, C. C., Gill, J., Williams, Q. & Perfit, M. R. Mantle melting and basalt extraction by equilibrium porous flow. Science 270, 1958–1961 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Langmuir, C. H., Klein, E. M. & Plank, T. in (eds Phipps Morgan, J., Blackman, D. K. & Sinton, J. M.) 183–280 (Geophysical Monograph 71, American Geophysical Union, 1992)

  26. Taylor, W. R. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jb. Mineral. Abh. 172, 381–408 (1998)

    CAS  Google Scholar 

  27. Lasaga, A. C. in Advances in Physical Geochemistry Vol. 3 (ed. Saxena, S. K.) 81–114 (Springer, 1983)

    Google Scholar 

  28. Magde, L. S., Sparks, D. W. & Detrick, R. S. The relationship between buoyant mantle flow, melt migration, and gravity bull's eyes at the Mid-Atlantic Ridge between 33°N and 35°N. Earth Planet. Sci. Lett. 148, 59–67 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Magde, L. S., Barclay, A. H., Toomey, D. R., Detrick, R. S. & Collins, J. A. Crustal magma plumbing within a segment of the Mid Atlantic Ridge, 35° N. Earth Planet. Sci. Lett. 175, 55–67 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Scott, D. R. & Stevenson, D. J. Magma solitons. Geophys. Res. Lett. 11, 1161–1164 (1984)

    Article  ADS  Google Scholar 

  31. Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res. 5, 165–172 (1981)

    Google Scholar 

  32. Phipps Morgan, J. & Forsyth, D. W. Three-dimensional flow and temperature perturbations due to a transform offset: Effects on oceanic crustal and upper mantle structure. J. Geophys. Res. 93, 2955–2966 (1988)

    Article  ADS  Google Scholar 

  33. Blackman, D. K. & Forsyth, D. W. in (eds Phipps Morgan, J., Blackman, D. K. & Sinton, J. K.) 311–326 (Geophysical Monograph 71, American Geophysical Union, 1992)

  34. Buck, W. R. & Su, W. Focused mantle upwelling below mid-ocean ridges due to feedback between viscosity and melting. Geophys. Res. Lett. 16, 641–644 (1989)

    Article  ADS  Google Scholar 

  35. Scott, D. R. & Stevenson, D. J. A self-consistent model of melting, magma migration and buoyancy-driven circulation beneath mid-ocean ridges. J. Geophys. Res. 94, 2973–2988 (1989)

    Article  ADS  Google Scholar 

  36. Sotin, C. J. & Parmentier, E. M. Dynamical consequences of compositional and thermal density stratification beneath spreading centers. Geophys. Res. Lett. 16, 835–838 (1989)

    Article  ADS  Google Scholar 

  37. Pariso, J. E., Sempere, J. C. & Rommevaux, C. Temporal and spatial variations in crustal accretion along the Mid-Atlantic Ridge (29°-31°30′N) over the last 10 m.y.: Implications from a 3-D gravity study. J. Geophys. Res. 100, 17781–17794 (1995)

    Article  ADS  Google Scholar 

  38. Tucholke, B. E. et al. Segmentation and crustal structure of the western Mid-Atlantic Ridge flank, 25°25′-27°10′N and 0-29 m.y. J. Geophys. Res. 102, 10203–10223 (1997)

    Article  ADS  Google Scholar 

  39. Sparks, D. W., Parmentier, E. M. & Phipps Morgan, J. Three-dimensional convection beneath a segmented spreading center: Implications for along-axis variations in crustal thickness and gravity. J. Geophys. Res. 98, 21977–21995 (1993)

    Article  ADS  Google Scholar 

  40. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

    Article  ADS  CAS  Google Scholar 

  41. Braun, M. G., Hirth, G. & Parmentier, E. M. The effect of deep damp melting on mantle flow and melt generation beneath mid-ocean ridges. Earth Planet. Sci. Lett. 176, 339–356 (2000)

    Article  ADS  CAS  Google Scholar 

  42. Choblet, G. & Parmentier, E. M. Mantle upwelling and melting beneath slow-spreading centers: Effects of variable rheology and melt productivity. Earth Planet. Sci. Lett. 184, 589–604 (2001)

    Article  ADS  CAS  Google Scholar 

  43. Neumann, G. A. & Forsyth, D. W. The paradox of the axial profile: Isostatic compensation along the axis of the Mid-Atlantic Ridge? J. Geophys. Res. 98, 17891–17910 (1993)

    Article  ADS  Google Scholar 

  44. Detrick, R. S., Needham, H. D. & Renard, V. Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33°N and 40°N. J. Geophys. Res. 100, 3767–3787 (1995)

    Article  ADS  Google Scholar 

  45. Hooft, E. E. E., Detrick, R. S., Toomey, D. R., Collins, J. A. & Lin, J. Crustal thickness and structure along three contrasting spreading segments of the Mid-Atlantic Ridge, 33.5°-35°N. J. Geophys. Res. 105, 8205–8226 (2000)

    Article  ADS  Google Scholar 

  46. Shen, Y. et al. Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland. Earth Planet. Sci. Lett. 197, 261–272 (2002)

    Article  ADS  CAS  Google Scholar 

  47. Yang, X. & Fischer, K. M. Constraints on North Atlantic upper mantle anisotropy from S and SS phases. Geophys. Res. Lett. 21, 309–312 (1994)

    Article  ADS  Google Scholar 

  48. Prince, R. A. & Forsyth, D. W. Horizontal extent of anomalously thin crust near the Vema fracture zone from the three-dimensional analysis of gravity anomalies. J. Geophys. Res. 93, 8051–8063 (1988)

    Article  ADS  Google Scholar 

  49. Huang, M., Guan, Z., Zhai, G. & Ouyang, Y. On the compensation of systematics errors in marine gravity measurements. Mar. Geodesy 22, 183–194 (1999)

    Article  Google Scholar 

  50. Bonatti, E. et al. Steady-state creation of crust-free lithosphere at cold spots in mid-ocean ridges. Geology 29, 979–982 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Peyve and co-workers at the Geology Institute, Russian Academy of Science, and the captain and crew of the RV Akademic N. Strakhov for help with field work. We thank K. Kastens for providing cruise EW9305 gravity data; W. R. Buck and J. Karson for comments on the manuscript; and D.W. Forsyth for providing programs useful in processing gravity data. This work was supported by the Consiglio Nazionale Ricerche and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Bonatti.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonatti, E., Ligi, M., Brunelli, D. et al. Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere. Nature 423, 499–505 (2003). https://doi.org/10.1038/nature01594

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01594

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing