Abstract
Desert dust aerosols affect Earthâs global energy balance through direct interactions with radiation, and through indirect interactions with clouds and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, or what the effects of potential future changes in dust loading will be. Here we present an analysis of the size and abundance of dust aerosols to constrain the direct radiative effect of dust. Using observational data on dust abundance, in situ measurements of dust optical properties and size distribution, and climate and atmospheric chemical transport model simulations of dust lifetime, we find that the dust found in the atmosphere is substantially coarser than represented in current global climate models. As coarse dust warms the climate, the global dust direct radiative effect is likely to be less cooling than the â¼â0.4âWâmâ2 estimated by models in a current global aerosol model ensemble. Instead, we constrain the dust direct radiative effect to a range between â0.48 and +0.20âWâmâ2, which includes the possibility that dust causes a net warming of the planet.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Mahowald, N. et al. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 15, 53â71 (2014).
Tegen, I. & Lacis, A. A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. 101, 19237â19244 (1996).
Miller, R. L. et al. Mineral dust aerosols in the NASA goddard institute for Space Sciences ModelE atmospheric general circulation model. J. Geophys. Res. 111, D06208 (2006).
Zender, C. S., Miller, R. L. & Tegen, I. Quantifying mineral dust mass budgets: terminology, constraints, and current estimates. Eos 85, 509â512 (2004).
Textor, C. et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 6, 1777â1813 (2006).
Huneeus, N. et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11, 7781â7816 (2011).
Boucher, O. et al. Climate Change 2013: The Physical Science Basis (ed. Stocker, T. F.) 571â658 (IPCC, Cambridge Univ. Press, 2013).
Kok, J. F. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc. Natl Acad. Sci. USA 108, 1016â1021 (2011).
Balkanski, Y., Schulz, M., Claquin, T. & Guibert, S. Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys. 7, 81â95 (2007).
Evan, A. T., Flamant, C., Fiedler, S. & Doherty, O. An analysis of aeolian dust in climate models. Geophys. Res. Lett. 41, 5996â6001 (2014).
Mahowald, N. M. et al. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos. Chem. Phys. 10, 10875â10893 (2010).
Heald, C. L. et al. Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmos. Chem. Phys. 14, 5513â5527 (2014).
Scanza, R. et al. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing. Atmos. Chem. Phys. 15, 537â561 (2015).
Albani, S. et al. Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Sy. 6, 541â570 (2014).
Stevens, B. Rethinking the lower bound on aerosol radiative forcing. J. Clim. 28, 4794â4819 (2015).
Ridley, D. A., Heald, C. L., Kok, J. F. & Zhao, C. An observationally-constrained estimate of global dust aerosol optical depth. Atmos. Chem. Phys. 16, 15097â15117 (2016).
Meng, Z. K. et al. Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: a database for application to radiative transfer calculations. J. Aerosol Sci. 41, 501â512 (2010).
Kalashnikova, O. V. & Sokolik, I. N. Modeling the radiative properties of nonspherical soil-derived mineral aerosols. J. Quant. Spectrosc. Radiat. Transfer 87, 137â166 (2004).
Van der Does, M., Korte, L. F., Munday, C. I., Brummer, G.-J. & Stuut, J.-B. W. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic. Atmos. Chem. Phys. 16, 13697â13710 (2016).
Cakmur, R. V. et al. Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations. J. Geophys. Res. 111, D06207 (2006).
Lacagnina, C. et al. Aerosol single-scattering albedo over the global oceans: comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates. J. Geophys. Res. 120, 9814â9836 (2015).
Ginoux, P. et al. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 106, 20255â20273 (2001).
Zender, C. S., Bian, H. S. & Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J. Geophys. Res. 108, 4416 (2003).
Okada, K., Heintzenberg, J., Kai, K. J. & Qin, Y. Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys. Res. Lett. 28, 3123â3126 (2001).
Potenza, M. A. C. et al. Shape and size constraints on dust optical properties from the Dome C ice core, Antarctica. Sci. Rep. 6, 28162 (2016).
Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67â71 (2005).
Mahowald, N. Aerosol indirect effect on biogeochemical cycles and climate. Science 334, 794â796 (2011).
DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl Acad. Sci. USA 107, 11217â11222 (2010).
Tan, I., Storelvmo, T. & Zelinka, M. D. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352, 224â227 (2016).
Mahowald, N. M. et al. Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys. Res. Lett. 33, L20705 (2006).
Forster, P. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 129â234 (IPCC, Cambridge Univ. Press, 2007).
Ryder, C. L., Highwood, E. J., Lai, T. M., Sodeman, H. & Masham, J. H. Impact of atmospheric transport on the evolution of microphysical and optical properties of Saharan dust. Geophys. Res. Lett. 40, 2433â2438 (2013).
Evan, A. T., Flamant, C., Gaetani, M. & Guichard, F. The past, present and future of African dust. Nature 531, 493â495 (2016).
Stanelle, T., Bey, I., Raddatz, T., Reick, C. & Tegen, I. Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. J. Geophys. Res. 119, 13526â13546 (2014).
Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012).
Allen, R. J., Landuyt, W. & SRumbold, S. T. An increase in aerosol burden and radiative effects in a warmer world. Nat. Clim. Change 6, 269â274 (2016).
Rosenberg, P. D. et al. Quantifying particle size and turbulent scale dependence of dust flux in the Sahara using aircraft measurements. J. Geophys. Res. 119, 7577â7598 (2014).
Kok, J. F., Parteli, E. J. R., Michaels, T. I. & Karam, D. B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012).
Kok, J. F. et al. An improved dust emission model - Part 1: Model description and comparison against measurements. Atmos. Chem. Phys. 14, 13023â13041 (2014).
Kahn, R. A. Reducing the uncertainties in direct aerosol radiative forcing. Surv. Geophys. 33, 701â721 (2012).
Denjean, C. et al. Long-range transport across the Atlantic in summertime does not enhance the hygroscopicity of African mineral dust. Geophys. Res. Lett. 42, 7835â7843 (2015).
Bauer, S. E. et al. Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling? J. Geophys. Res. 112, D06307 (2007).
Seinfeld, J. H. et al. ACE-ASIA - Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Am. Meteorol. Soc. 85, 367â380 (2004).
Weinzierl, B. et al. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus Ser. B-Chem. Phys. Meteorol. 61, 96â117 (2009).
Baddock, M. C., Ginoux, P., Bullard, J. E. & Gill, T. E. Do MODIS-defined dust sources have a geomorphological signature? Geophys. Res. Lett. 43, 2606â2613 (2016).
Hsu, N. C., Tsay, S. C., King, M. D. & Herman, J. R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sensing 42, 557â569 (2004).
Ginoux, P. et al. Mixing of dust and NH3 observed globally over anthropogenic dust sources. Atmos. Chem. Phys. 12, 7351â7363 (2012).
Kandler, K. et al. Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy. Atmos. Environ. 41, 8058â8074 (2007).
Kandler, K. et al. Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus Ser. B-Chem. Phys. Meteorol. 61, 32â50 (2009).
Dufresne, J. L., Gautier, C., Ricchiazzi, P. & Fouquart, Y. Longwave scattering effects of mineral aerosols. J. Atmos. Sci. 59, 1959â1966 (2002).
Zhao, C. et al. Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmos. Chem. Phys. 13, 10733â10753 (2013).
Ginoux, P. Effects of nonsphericity on mineral dust modeling. J. Geophys. Res. 108, 4052 (2003).
Perlwitz, J. P., Garcia-Pando, C. P. & Miller, R. L. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes. Atmos. Chem. Phys. 15, 11593â11627 (2015).
Chou, C. et al. Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and biomass-burning experiment field campaign in Niger, January 2006. J. Geophys. Res. 113, D00C10 (2008).
Mätzler, C. MATLAB Functions for Mie Scattering and Absorption (Institut für Angewandte Physik, 2002).
Gillette, D. A., Blifford, I. H. & Fenster, C. R. Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion. J. Appl. Meteor. 11, 977â987 (1972).
Gillette, D. A. On the production of soil wind erosion having the potential for long range transport. J. Rech. Atmos. 8, 734â744 (1974).
Gillette, D. A., Blifford, I. H. & Fryrear, D. W. Influence of wind velocity on size distributions of aerosols generated by wind erosion of soils. J. Geophys. Res. 79, 4068â4075 (1974).
Fratini, G., Ciccioli, P., Febo, A., Forgione, A. & Valentini, R. Size-segregated fluxes of mineral dust from a desert area of northern China by eddy covariance. Atmos. Chem. Phys. 7, 2839â2854 (2007).
Sow, M., Alfaro, S. C., Rajot, J. L. & Marticorena, B. Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment. Atmos. Chem. Phys. 9, 3881â3891 (2009).
Shao, Y., Ishizuka, M., Mikami, M. & Leys, J. F. Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. 116, D08203 (2011).
Kok, J. F. Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmos. Chem. Phys. 11, 10149â10156 (2011).
Denjean, C. et al. Size distribution and optical properties of African mineral dust after intercontinental transport. J. Geophys. Res. 121, 7117â7138 (2016).
Reid, J. S. et al. Dynamics of southwest Asian dust particle size characteristics with implications for global dust research. J. Geophys. Res. 113, D14212 (2008).
Yue, X., Wang, H., Wang, Z. & Fan, K. Simulation of dust aerosol radiative feedback using the Global transport model of dust: 1. Dust cycle and validation. J. Geophys. Res. 114, D10202 (2009).
Kok, J. F., Albani, S., Mahowald, N. M. & Ward, D. S. An improved dust emission model - Part 2: Evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmos. Chem. Phys. 14, 13043â13061 (2014).
Liu, X. et al. Uncertainties in global aerosol simulations: Assessment using three meteorological data sets. J. Geophys. Res. 112, D11212 (2007).
Liu, J., Mauzerall, D. L., Horowitz, L. W., Ginoux, P. & Fiore, A. M. Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth. Atmos. Environ. 43, 4327â4338 (2009).
Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman and Hall, 1986).
Acknowledgements
We thank V. Bouchard, B. Yi, K.-N. Liou, P. Yang, A. Tripati, D. Neelin, J. Bortnik, R. Martin, K. Ledger, A. Evan, S. Shaked and R. Kahn for helpful comments and discussions, and thank P. Rosenberg for providing the data from ref. 37. We acknowledge support from National Science Foundation (NSF) grant 1552519 (J.F.K.), NASA grants NN14AP38G (D.A.R. and C.L.H.) and NNG14HH42I (R.L.M.), and from the US Department of Energy as part of the Regional & Global Climate Modeling program (C.Z.).
Author information
Authors and Affiliations
Contributions
J.F.K. conceived the project, designed the study, performed the analysis, and wrote the paper. D.A.R., C.Z., C.L.H., R.L.M., D.S.W., S.A. and K.H. contributed global model simulations. Q.Z. assisted with designing the statistical model to constrain dust properties from different data sets. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 2629 kb)
Rights and permissions
About this article
Cite this article
Kok, J., Ridley, D., Zhou, Q. et al. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nature Geosci 10, 274â278 (2017). https://doi.org/10.1038/ngeo2912
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo2912
This article is cited by
-
Cooling from aerosolâradiation interaction of anthropogenic coarse particles in China
npj Climate and Atmospheric Science (2024)
-
Improved constraints on hematite refractive index for estimating climatic effects of dust aerosols
Communications Earth & Environment (2024)
-
A Reinterpretation of Phenomenological Modeling Approaches for Lagrangian Particles Settling in a Turbulent Boundary Layer
Boundary-Layer Meteorology (2024)
-
Investigation of \(PM_{2.5}\) and \(PM_{10}\) Dynamics in the Caribbean Basin Using a Multifractal Framework
Water, Air, & Soil Pollution (2024)
-
Assessment and characterization of particulate matter during the winter season in the urban environment of Lahore, Pakistan
International Journal of Environmental Science and Technology (2024)