Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Smaller desert dust cooling effect estimated from analysis of dust size and abundance

Abstract

Desert dust aerosols affect Earth’s global energy balance through direct interactions with radiation, and through indirect interactions with clouds and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, or what the effects of potential future changes in dust loading will be. Here we present an analysis of the size and abundance of dust aerosols to constrain the direct radiative effect of dust. Using observational data on dust abundance, in situ measurements of dust optical properties and size distribution, and climate and atmospheric chemical transport model simulations of dust lifetime, we find that the dust found in the atmosphere is substantially coarser than represented in current global climate models. As coarse dust warms the climate, the global dust direct radiative effect is likely to be less cooling than the ∼−0.4 W m−2 estimated by models in a current global aerosol model ensemble. Instead, we constrain the dust direct radiative effect to a range between −0.48 and +0.20 W m−2, which includes the possibility that dust causes a net warming of the planet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New constraints on dust properties and prevalence.
Figure 2: Size-resolved global loading of desert dust aerosols.
Figure 3: Global emission rate and atmospheric loading of desert dust aerosols.
Figure 4: Constraints on the global direct radiative effect (DRE) of PM20 dust.

Similar content being viewed by others

References

  1. Mahowald, N. et al. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 15, 53–71 (2014).

    Article  Google Scholar 

  2. Tegen, I. & Lacis, A. A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. 101, 19237–19244 (1996).

    Article  Google Scholar 

  3. Miller, R. L. et al. Mineral dust aerosols in the NASA goddard institute for Space Sciences ModelE atmospheric general circulation model. J. Geophys. Res. 111, D06208 (2006).

    Google Scholar 

  4. Zender, C. S., Miller, R. L. & Tegen, I. Quantifying mineral dust mass budgets: terminology, constraints, and current estimates. Eos 85, 509–512 (2004).

    Article  Google Scholar 

  5. Textor, C. et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 6, 1777–1813 (2006).

    Article  Google Scholar 

  6. Huneeus, N. et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11, 7781–7816 (2011).

    Article  Google Scholar 

  7. Boucher, O. et al. Climate Change 2013: The Physical Science Basis (ed. Stocker, T. F.) 571–658 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  8. Kok, J. F. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc. Natl Acad. Sci. USA 108, 1016–1021 (2011).

    Article  Google Scholar 

  9. Balkanski, Y., Schulz, M., Claquin, T. & Guibert, S. Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys. 7, 81–95 (2007).

    Article  Google Scholar 

  10. Evan, A. T., Flamant, C., Fiedler, S. & Doherty, O. An analysis of aeolian dust in climate models. Geophys. Res. Lett. 41, 5996–6001 (2014).

    Article  Google Scholar 

  11. Mahowald, N. M. et al. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos. Chem. Phys. 10, 10875–10893 (2010).

    Article  Google Scholar 

  12. Heald, C. L. et al. Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmos. Chem. Phys. 14, 5513–5527 (2014).

    Article  Google Scholar 

  13. Scanza, R. et al. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing. Atmos. Chem. Phys. 15, 537–561 (2015).

    Article  Google Scholar 

  14. Albani, S. et al. Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Sy. 6, 541–570 (2014).

    Article  Google Scholar 

  15. Stevens, B. Rethinking the lower bound on aerosol radiative forcing. J. Clim. 28, 4794–4819 (2015).

    Article  Google Scholar 

  16. Ridley, D. A., Heald, C. L., Kok, J. F. & Zhao, C. An observationally-constrained estimate of global dust aerosol optical depth. Atmos. Chem. Phys. 16, 15097–15117 (2016).

    Article  Google Scholar 

  17. Meng, Z. K. et al. Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: a database for application to radiative transfer calculations. J. Aerosol Sci. 41, 501–512 (2010).

    Article  Google Scholar 

  18. Kalashnikova, O. V. & Sokolik, I. N. Modeling the radiative properties of nonspherical soil-derived mineral aerosols. J. Quant. Spectrosc. Radiat. Transfer 87, 137–166 (2004).

    Article  Google Scholar 

  19. Van der Does, M., Korte, L. F., Munday, C. I., Brummer, G.-J. & Stuut, J.-B. W. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic. Atmos. Chem. Phys. 16, 13697–13710 (2016).

    Article  Google Scholar 

  20. Cakmur, R. V. et al. Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations. J. Geophys. Res. 111, D06207 (2006).

    Article  Google Scholar 

  21. Lacagnina, C. et al. Aerosol single-scattering albedo over the global oceans: comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates. J. Geophys. Res. 120, 9814–9836 (2015).

    Google Scholar 

  22. Ginoux, P. et al. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 106, 20255–20273 (2001).

    Article  Google Scholar 

  23. Zender, C. S., Bian, H. S. & Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J. Geophys. Res. 108, 4416 (2003).

    Article  Google Scholar 

  24. Okada, K., Heintzenberg, J., Kai, K. J. & Qin, Y. Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys. Res. Lett. 28, 3123–3126 (2001).

    Article  Google Scholar 

  25. Potenza, M. A. C. et al. Shape and size constraints on dust optical properties from the Dome C ice core, Antarctica. Sci. Rep. 6, 28162 (2016).

    Article  Google Scholar 

  26. Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Article  Google Scholar 

  27. Mahowald, N. Aerosol indirect effect on biogeochemical cycles and climate. Science 334, 794–796 (2011).

    Article  Google Scholar 

  28. DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl Acad. Sci. USA 107, 11217–11222 (2010).

    Article  Google Scholar 

  29. Tan, I., Storelvmo, T. & Zelinka, M. D. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352, 224–227 (2016).

    Article  Google Scholar 

  30. Mahowald, N. M. et al. Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys. Res. Lett. 33, L20705 (2006).

    Article  Google Scholar 

  31. Forster, P. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 129–234 (IPCC, Cambridge Univ. Press, 2007).

    Google Scholar 

  32. Ryder, C. L., Highwood, E. J., Lai, T. M., Sodeman, H. & Masham, J. H. Impact of atmospheric transport on the evolution of microphysical and optical properties of Saharan dust. Geophys. Res. Lett. 40, 2433–2438 (2013).

    Article  Google Scholar 

  33. Evan, A. T., Flamant, C., Gaetani, M. & Guichard, F. The past, present and future of African dust. Nature 531, 493–495 (2016).

    Article  Google Scholar 

  34. Stanelle, T., Bey, I., Raddatz, T., Reick, C. & Tegen, I. Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. J. Geophys. Res. 119, 13526–13546 (2014).

    Google Scholar 

  35. Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012).

    Article  Google Scholar 

  36. Allen, R. J., Landuyt, W. & SRumbold, S. T. An increase in aerosol burden and radiative effects in a warmer world. Nat. Clim. Change 6, 269–274 (2016).

    Article  Google Scholar 

  37. Rosenberg, P. D. et al. Quantifying particle size and turbulent scale dependence of dust flux in the Sahara using aircraft measurements. J. Geophys. Res. 119, 7577–7598 (2014).

    Article  Google Scholar 

  38. Kok, J. F., Parteli, E. J. R., Michaels, T. I. & Karam, D. B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012).

    Article  Google Scholar 

  39. Kok, J. F. et al. An improved dust emission model - Part 1: Model description and comparison against measurements. Atmos. Chem. Phys. 14, 13023–13041 (2014).

    Article  Google Scholar 

  40. Kahn, R. A. Reducing the uncertainties in direct aerosol radiative forcing. Surv. Geophys. 33, 701–721 (2012).

    Article  Google Scholar 

  41. Denjean, C. et al. Long-range transport across the Atlantic in summertime does not enhance the hygroscopicity of African mineral dust. Geophys. Res. Lett. 42, 7835–7843 (2015).

    Article  Google Scholar 

  42. Bauer, S. E. et al. Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling? J. Geophys. Res. 112, D06307 (2007).

    Article  Google Scholar 

  43. Seinfeld, J. H. et al. ACE-ASIA - Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Am. Meteorol. Soc. 85, 367–380 (2004).

    Article  Google Scholar 

  44. Weinzierl, B. et al. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus Ser. B-Chem. Phys. Meteorol. 61, 96–117 (2009).

    Article  Google Scholar 

  45. Baddock, M. C., Ginoux, P., Bullard, J. E. & Gill, T. E. Do MODIS-defined dust sources have a geomorphological signature? Geophys. Res. Lett. 43, 2606–2613 (2016).

    Article  Google Scholar 

  46. Hsu, N. C., Tsay, S. C., King, M. D. & Herman, J. R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sensing 42, 557–569 (2004).

    Article  Google Scholar 

  47. Ginoux, P. et al. Mixing of dust and NH3 observed globally over anthropogenic dust sources. Atmos. Chem. Phys. 12, 7351–7363 (2012).

    Article  Google Scholar 

  48. Kandler, K. et al. Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy. Atmos. Environ. 41, 8058–8074 (2007).

    Article  Google Scholar 

  49. Kandler, K. et al. Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus Ser. B-Chem. Phys. Meteorol. 61, 32–50 (2009).

    Article  Google Scholar 

  50. Dufresne, J. L., Gautier, C., Ricchiazzi, P. & Fouquart, Y. Longwave scattering effects of mineral aerosols. J. Atmos. Sci. 59, 1959–1966 (2002).

    Article  Google Scholar 

  51. Zhao, C. et al. Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmos. Chem. Phys. 13, 10733–10753 (2013).

    Article  Google Scholar 

  52. Ginoux, P. Effects of nonsphericity on mineral dust modeling. J. Geophys. Res. 108, 4052 (2003).

    Article  Google Scholar 

  53. Perlwitz, J. P., Garcia-Pando, C. P. & Miller, R. L. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes. Atmos. Chem. Phys. 15, 11593–11627 (2015).

    Article  Google Scholar 

  54. Chou, C. et al. Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and biomass-burning experiment field campaign in Niger, January 2006. J. Geophys. Res. 113, D00C10 (2008).

    Article  Google Scholar 

  55. Mätzler, C. MATLAB Functions for Mie Scattering and Absorption (Institut für Angewandte Physik, 2002).

    Google Scholar 

  56. Gillette, D. A., Blifford, I. H. & Fenster, C. R. Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion. J. Appl. Meteor. 11, 977–987 (1972).

    Article  Google Scholar 

  57. Gillette, D. A. On the production of soil wind erosion having the potential for long range transport. J. Rech. Atmos. 8, 734–744 (1974).

    Google Scholar 

  58. Gillette, D. A., Blifford, I. H. & Fryrear, D. W. Influence of wind velocity on size distributions of aerosols generated by wind erosion of soils. J. Geophys. Res. 79, 4068–4075 (1974).

    Article  Google Scholar 

  59. Fratini, G., Ciccioli, P., Febo, A., Forgione, A. & Valentini, R. Size-segregated fluxes of mineral dust from a desert area of northern China by eddy covariance. Atmos. Chem. Phys. 7, 2839–2854 (2007).

    Article  Google Scholar 

  60. Sow, M., Alfaro, S. C., Rajot, J. L. & Marticorena, B. Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment. Atmos. Chem. Phys. 9, 3881–3891 (2009).

    Article  Google Scholar 

  61. Shao, Y., Ishizuka, M., Mikami, M. & Leys, J. F. Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. 116, D08203 (2011).

    Google Scholar 

  62. Kok, J. F. Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmos. Chem. Phys. 11, 10149–10156 (2011).

    Article  Google Scholar 

  63. Denjean, C. et al. Size distribution and optical properties of African mineral dust after intercontinental transport. J. Geophys. Res. 121, 7117–7138 (2016).

    Google Scholar 

  64. Reid, J. S. et al. Dynamics of southwest Asian dust particle size characteristics with implications for global dust research. J. Geophys. Res. 113, D14212 (2008).

    Article  Google Scholar 

  65. Yue, X., Wang, H., Wang, Z. & Fan, K. Simulation of dust aerosol radiative feedback using the Global transport model of dust: 1. Dust cycle and validation. J. Geophys. Res. 114, D10202 (2009).

    Article  Google Scholar 

  66. Kok, J. F., Albani, S., Mahowald, N. M. & Ward, D. S. An improved dust emission model - Part 2: Evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmos. Chem. Phys. 14, 13043–13061 (2014).

    Article  Google Scholar 

  67. Liu, X. et al. Uncertainties in global aerosol simulations: Assessment using three meteorological data sets. J. Geophys. Res. 112, D11212 (2007).

    Article  Google Scholar 

  68. Liu, J., Mauzerall, D. L., Horowitz, L. W., Ginoux, P. & Fiore, A. M. Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth. Atmos. Environ. 43, 4327–4338 (2009).

    Article  Google Scholar 

  69. Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman and Hall, 1986).

    Book  Google Scholar 

Download references

Acknowledgements

We thank V. Bouchard, B. Yi, K.-N. Liou, P. Yang, A. Tripati, D. Neelin, J. Bortnik, R. Martin, K. Ledger, A. Evan, S. Shaked and R. Kahn for helpful comments and discussions, and thank P. Rosenberg for providing the data from ref. 37. We acknowledge support from National Science Foundation (NSF) grant 1552519 (J.F.K.), NASA grants NN14AP38G (D.A.R. and C.L.H.) and NNG14HH42I (R.L.M.), and from the US Department of Energy as part of the Regional & Global Climate Modeling program (C.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J.F.K. conceived the project, designed the study, performed the analysis, and wrote the paper. D.A.R., C.Z., C.L.H., R.L.M., D.S.W., S.A. and K.H. contributed global model simulations. Q.Z. assisted with designing the statistical model to constrain dust properties from different data sets. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jasper F. Kok.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kok, J., Ridley, D., Zhou, Q. et al. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nature Geosci 10, 274–278 (2017). https://doi.org/10.1038/ngeo2912

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing